Semin Respir Crit Care Med 2024; 45(05): 543-547
DOI: 10.1055/s-0044-1791737
Review Article

The Role of Viral Infections in the Development and Progression of COPD

Robert Burkes
1   Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati, Cincinnati, Ohio
› Author Affiliations
Funding None.

Abstract

Chronic obstructive pulmonary disease (COPD) is a common chronic disease seen in smokers associated with poor functional status, quality of life, and morbidity and mortality from acute worsening of chronic symptoms, also called exacerbations. As a disease, the risk factors for COPD are well defined; however, there is room for innovation in identifying underlying biological processes, or “endotypes,” that lead to the emergence and/or progression of COPD. Identifying endotypes allows for more thorough understanding of the disease, may reveal the means of disease prevention, and may be leveraged in novel therapeutic approaches. In this review, we discuss the interface of viral infections with both cellular and epithelial immunity as a potential endotype of interest in COPD.



Publication History

Article published online:
25 October 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Tamondong-Lachica DR, Skolnik N, Hurst JR. et al. GOLD 2023 update: implications for clinical practice. Int J Chron Obstruct Pulmon Dis 2023; 18: 745-754
  • 2 Wheaton AG, Liu Y, Croft JB. et al. Chronic obstructive pulmonary disease and smoking status: United States, 2017. MMWR Morb Mortal Wkly Rep 2019; 68 (24) 533-538
  • 3 Burkes RM, Panos RJ, Borchers MT. How might endotyping guide chronic obstructive pulmonary disease treatment? Current understanding, knowledge gaps and future research needs. Curr Opin Pulm Med 2021; 27 (02) 120-124
  • 4 Oishi K, Matsunaga K, Shirai T, Hirai K, Gon Y. Role of type2 inflammatory biomarkers in chronic obstructive pulmonary disease. J Clin Med 2020; 9 (08) 9
  • 5 Quint JK, Ariel A, Barnes PJ. Rational use of inhaled corticosteroids for the treatment of COPD. NPJ Prim Care Respir Med 2023; 33 (01) 27
  • 6 Singh D. Blood eosinophil counts in chronic obstructive pulmonary disease: a biomarker of inhaled corticosteroid effects. Tuberc Respir Dis (Seoul) 2020; 83 (03) 185-194
  • 7 Ashdown HF, Smith M, McFadden E, Pavord ID, Butler CC, Bafadhel M. Blood eosinophils to guide inhaled maintenance therapy in a primary care COPD population. ERJ Open Res 2021; 8 (01) 8
  • 8 Weissler JC, Adams TN. Eosinophilic chronic obstructive pulmonary disease. Lung 2021; 199 (06) 589-595
  • 9 Albanna A, Almuyidi FM, Beitar NF. et al. Clinical characteristics and outcome related to blood eosinophilic chronic obstructive pulmonary disease (COPD) patients. Cureus 2022; 14 (08) e27998
  • 10 Ma R, Su H, Jiao K, Liu J. Association between IL-17 and chronic obstructive pulmonary disease: a systematic review and meta-analysis. Int J Chron Obstruct Pulmon Dis 2023; 18: 1681-1690
  • 11 Henen C, Johnson EA, Wiesel S. Unleashing the power of IL-17: a promising frontier in chronic obstructive pulmonary disease (COPD) treatment. Cureus 2023; 15 (07) e41977
  • 12 Kesimer M, Ford AA, Ceppe A. et al. Airway mucin concentration as a marker of chronic bronchitis. N Engl J Med 2017; 377 (10) 911-922
  • 13 Diaz AA, Orejas JL, Grumley S. et al. Airway-occluding mucus plugs and mortality in patients with chronic obstructive pulmonary disease. JAMA 2023; 329 (21) 1832-1839
  • 14 Kim V, Dolliver WR, Nath HP. et al; COPDGene Investigators. Mucus plugging on computed tomography and chronic bronchitis in chronic obstructive pulmonary disease. Respir Res 2021; 22 (01) 110
  • 15 Bennett WD, Henderson AG, Ceppe A. et al. Effect of hypertonic saline on mucociliary clearance and clinical outcomes in chronic bronchitis. ERJ Open Res 2020; 6 (03) 6
  • 16 Frickmann H, Jungblut S, Hirche TO, Groß U, Kuhns M, Zautner AE. The influence of virus infections on the course of COPD. Eur J Microbiol Immunol (Bp) 2012; 2 (03) 176-185
  • 17 Singanayagam A, Joshi PV, Mallia P, Johnston SL. Viruses exacerbating chronic pulmonary disease: the role of immune modulation. BMC Med 2012; 10: 27
  • 18 Dimopoulos G, Lerikou M, Tsiodras S. et al. Viral epidemiology of acute exacerbations of chronic obstructive pulmonary disease. Pulm Pharmacol Ther 2012; 25 (01) 12-18
  • 19 Williams M, Todd I, Fairclough LC. The role of CD8 + T lymphocytes in chronic obstructive pulmonary disease: a systematic review. Inflamm Res 2021; 70 (01) 11-18
  • 20 Duttagupta PA, Boesteanu AC, Katsikis PD. Costimulation signals for memory CD8+ T cells during viral infections. Crit Rev Immunol 2009; 29 (06) 469-486
  • 21 Kim MT, Harty JT. Impact of inflammatory cytokines on effector and memory CD8+ T cells. Front Immunol 2014; 5: 295
  • 22 Zheng MZM, Tan TK, Villalon-Letelier F. et al. Single-cycle influenza virus vaccine generates lung CD8+ Trm that cross-react against viral variants and subvert virus escape mutants. Sci Adv 2023; 9 (36) eadg3469
  • 23 Lea S, Higham A, Beech A, Singh D. How inhaled corticosteroids target inflammation in COPD. Eur Respir Rev 2023;32(170):
  • 24 Grundy S, Kaur M, Plumb J. et al. CRAC channel inhibition produces greater anti-inflammatory effects than glucocorticoids in CD8 cells from COPD patients. Clin Sci (Lond) 2014; 126 (03) 223-232
  • 25 Grundy S, Plumb J, Kaur M, Ray D, Singh D. Additive anti-inflammatory effects of corticosteroids and phosphodiesterase-4 inhibitors in COPD CD8 cells. Respir Res 2016; 17: 9
  • 26 Lapperre TS, Snoeck-Stroband JB, Gosman MM. et al; Groningen Leiden Universities Corticosteroids in Obstructive Lung Disease Study Group. Effect of fluticasone with and without salmeterol on pulmonary outcomes in chronic obstructive pulmonary disease: a randomized trial. Ann Intern Med 2009; 151 (08) 517-527
  • 27 Uddbäck I, Cartwright EK, Schøller AS. et al. Long-term maintenance of lung resident memory T cells is mediated by persistent antigen. Mucosal Immunol 2021; 14 (01) 92-99
  • 28 Yang IA, Clarke MS, Sim EH, Fong KM. Inhaled corticosteroids for stable chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2012; 2012 (07) CD002991
  • 29 Caramori G, Casolari P, Barczyk A, Durham AL, Di Stefano A, Adcock I. COPD immunopathology. Semin Immunopathol 2016; 38 (04) 497-515
  • 30 Prager I, Watzl C. Mechanisms of natural killer cell-mediated cellular cytotoxicity. J Leukoc Biol 2019; 105 (06) 1319-1329
  • 31 Geary CD, Sun JC. Memory responses of natural killer cells. Semin Immunol 2017; 31: 11-19
  • 32 Hildeman DA, Zhu Y, Mitchell TC, Kappler J, Marrack P. Molecular mechanisms of activated T cell death in vivo. Curr Opin Immunol 2002; 14 (03) 354-359
  • 33 Min-Oo G, Bezman NA, Madera S, Sun JC, Lanier LL. Proapoptotic Bim regulates antigen-specific NK cell contraction and the generation of the memory NK cell pool after cytomegalovirus infection. J Exp Med 2014; 211 (07) 1289-1296
  • 34 Grayson JM, Zajac AJ, Altman JD, Ahmed R. Cutting edge: increased expression of Bcl-2 in antigen-specific memory CD8+ T cells. J Immunol (Baltimore, Md: 1950) 2000; 164 (08) 3950-3954
  • 35 Waggoner SN, Reighard SD, Gyurova IE. et al. Roles of natural killer cells in antiviral immunity. Curr Opin Virol 2016; 16: 15-23
  • 36 Freeman CM, Stolberg VR, Crudgington S. et al. Human CD56+ cytotoxic lung lymphocytes kill autologous lung cells in chronic obstructive pulmonary disease. PLoS One 2014; 9 (07) e103840
  • 37 Osterburg AR, Lach L, Panos RJ, Borchers MT. Unique natural killer cell subpopulations are associated with exacerbation risk in chronic obstructive pulmonary disease. Sci Rep 2020; 10 (01) 1238
  • 38 Burkes R, Osterburg A, Hwalek T, Lach L, Panos RJ, Borchers MT. Cytomegalovirus seropositivity is associated with airflow limitation in a cohort of veterans with a high prevalence of smoking. Chronic Obstr Pulm Dis (Miami) 2021; 8 (04) 441-449
  • 39 Burkes RM, Bailey E, Hwalek T. et al. Associations of smoking, cytomegalovirus serostatus, and natural killer cell phenotypes in smokers with and at risk for COPD. Chronic Obstr Pulm Dis (Miami) 2023; 10 (03) 286-296
  • 40 Uzeloto JS, Ramos D, Silva BSA. et al. Mucociliary clearance of different respiratory conditions: a clinical study. Int Arch Otorhinolaryngol 2021; 25 (01) e35-e40
  • 41 Hope T, Becker M, Martin-Sancho L. et al. Live imaging of the airway epithelium reveals that mucociliary clearance modulates SARS-CoV-2 spread. Research square 2023
  • 42 Pace E, Di Vincenzo S, Ferraro M, Lanata L, Scaglione F. Role of airway epithelium in viral respiratory infections: can carbocysteine prevent or mitigate them?. Immunology 2024; 172 (03) 329-342
  • 43 Singanayagam A, Loo SL, Calderazzo M. et al. Antiviral immunity is impaired in COPD patients with frequent exacerbations. Am J Physiol Lung Cell Mol Physiol 2019; 317 (06) L893-L903
  • 44 Burkes RM, Ceppe AS, Wolf M, Donohue JF, Drummond MB. Blood cathelicidin is associated with pneumonia in acute exacerbations of COPD. Paper presented at: American Thoracic Society Annual Meeting; August 5–10, 2020
  • 45 Burkes RM, Astemborski J, Lambert AA. et al. Plasma cathelicidin and longitudinal lung function in current and former smokers. PLoS One 2019; 14 (02) e0212628
  • 46 Burkes RM, Ceppe AS, Couper DJ. et al; SPIROMICS collaborators. Plasma cathelicidin is independently associated with reduced lung function in COPD: analysis of the subpopulations and intermediate outcome measures in COPD study cohort. Chronic Obstr Pulm Dis (Miami) 2020; 7 (04) 370-381
  • 47 Herr C, Shaykhiev R, Bals R. The role of cathelicidin and defensins in pulmonary inflammatory diseases. Expert Opin Biol Ther 2007; 7 (09) 1449-1461
  • 48 Nedeva D, Kowal K, Mihaicuta S. et al. Epithelial alarmins: a new target to treat chronic respiratory diseases. Expert Rev Respir Med 2023; 17 (09) 773-786
  • 49 Calderon AA, Dimond C, Choy DF. et al. Targeting interleukin-33 and thymic stromal lymphopoietin pathways for novel pulmonary therapeutics in asthma and COPD. Eur Respir Rev 2023;32(167):
  • 50 Burkes RM, Ceppe AS, Doerschuk CM. et al; SPIROMICS Investigators. Associations among 25-hydroxyvitamin D levels, lung function, and exacerbation outcomes in COPD: an analysis of the SPIROMICS cohort. Chest 2020; 157 (04) 856-865
  • 51 Sanders EC, Burkes RM, Mock JR. et al. Bronchoalveolar lavage and plasma cathelicidin response to 25-hydroxy vitamin D supplementation: a pilot study. Chronic Obstr Pulm Dis (Miami) 2021; 8 (03) 371-381
  • 52 Planer JD, Morrisey EE. After the storm: regeneration, repair, and reestablishment of homeostasis between the alveolar epithelium and innate immune system following viral lung injury. Annu Rev Pathol 2023; 18: 337-359
  • 53 Atkin-Smith GK, Duan M, Chen W, Poon IKH. The induction and consequences of influenza A virus-induced cell death. Cell Death Dis 2018; 9 (10) 1002
  • 54 Fernanda de Mello Costa M, Weiner AI, Vaughan AE. Basal-like progenitor cells: a review of dysplastic alveolar regeneration and remodeling in lung repair. Stem Cell Reports 2020; 15 (05) 1015-1025
  • 55 Yee M, Domm W, Gelein R. et al. Alternative progenitor lineages regenerate the adult lung depleted of alveolar epithelial type 2 cells. Am J Respir Cell Mol Biol 2017; 56 (04) 453-464
  • 56 Xi Y, Kim T, Brumwell AN. et al. Local lung hypoxia determines epithelial fate decisions during alveolar regeneration. Nat Cell Biol 2017; 19 (08) 904-914
  • 57 Shivaraju M, Chitta UK, Grange RMH. et al. Airway stem cells sense hypoxia and differentiate into protective solitary neuroendocrine cells. Science 2021; 371 (6524) 52-57
  • 58 Sin DD. Chronic obstructive pulmonary disease and the airway microbiome: what respirologists need to know. Tuberc Respir Dis (Seoul) 2023; 86 (03) 166-175
  • 59 Marrella V, Nicchiotti F, Cassani B. Microbiota and immunity during respiratory infections: lung and gut affair. Int J Mol Sci 2024; 25 (07) 25
  • 60 Pfeiffer S, Herzmann C, Gaede KI, Kovacevic D, Krauss-Etschmann S, Schloter M. Different responses of the oral, nasal and lung microbiomes to cigarette smoke. Thorax 2022; 77 (02) 191-195
  • 61 Sethi S. Chronic obstructive pulmonary disease and infection. Disruption of the microbiome?. Ann Am Thorac Soc 2014; 11 (Suppl. 01) S43-S47
  • 62 Kim HJ, Jo A, Jeon YJ. et al. Nasal commensal Staphylococcus epidermidis enhances interferon-λ-dependent immunity against influenza virus. Microbiome 2019; 7 (01) 80
  • 63 Natalini JG, Singh S, Segal LN. The dynamic lung microbiome in health and disease. Nat Rev Microbiol 2023; 21 (04) 222-235
  • 64 Yang D, Xing Y, Song X, Qian Y. The impact of lung microbiota dysbiosis on inflammation. Immunology 2020; 159 (02) 156-166
  • 65 Li R, Li J, Zhou X. Lung microbiome: new insights into the pathogenesis of respiratory diseases. Signal Transduct Target Ther 2024; 9 (01) 19
  • 66 Shrock EL, Shrock CL, Elledge SJ. VirScan: high-throughput profiling of antiviral antibody epitopes. Bio Protoc 2022; 12 (13) 12
  • 67 Song Z, Liu X, Xiang P. et al. The current status of vaccine uptake and the impact of COVID-19 on intention to vaccination in patients with COPD in Beijing. Int J Chron Obstruct Pulmon Dis 2021; 16: 3337-3346