Plant Biol (Stuttg) 2001; 3(4): 326-334
DOI: 10.1055/s-2001-16450
Original Paper
Georg Thieme Verlag Stuttgart ·New York

Effects of Water and Nitrogen Supply on Water Use Efficiency and Carbon Isotope Discrimination in Edible Canna (Canna edulis Ker-Gawler)

H. Brück 1 , C. Jureit 1 , M. Hermann 2 , A. Schulz 3 , B. Sattelmacher 1
  • 1 Institute of Plant Nutrition and Soil Science, University of Kiel, Kiel, Germany
  • 2 International Potato Centre (CIP), Apartado Postal 1558, Lima 12, Peru
  • 3 Department of Plant Biology, The Royal Veterinary and Agricultural University, Frederiksberg C, Copenhagen, Denmark
Further Information

Publication History

December 23, 1999

March 14, 2001

Publication Date:
16 August 2001 (online)

Abstract

Transpirational water use efficiency (WUE) is affected by nutrient and water supply, but relatively little is known about the response of Andean root and tuber crops, such as edible canna (Canna edulis Ker-Gawler). Two Canna edulis genotypes were studied in semi-controlled greenhouse experiments at the International Potato Centre (CIP) near Quito, Ecuador. Under conditions of low water supply, shoot dry matter (DM), leaf area and specific leaf nitrogen (SLN) all decreased, while WUE was higher and carbon isotope discrimination (Δ) decreased. The large water-storing hypodermal cells characteristic of this plant's leaf morphology shrank, concertina-like, the leaves became thinner, and the specific leaf area increased significantly (from 26 m-2 kg-1 to 43 m-2 kg-1). In a second experiment, plants were grown with three different levels of nitrogen supply: from low to high N supply, shoot DM increased significantly (from 16 to 37 g), along with leaf area and SLN. At the lowest level of nitrogen supply (N0), WUE was significantly lower and Δ increased. As expected, the linear correlation between Δ and WUE was negative, but variation in Δ could only explain 49 % of the variation in WUE. If, in addition to Δ, measured root fraction (RF) and estimated values of leaf-to-air vapour pressure deficit (Δe) and respiratory and unproductive carbon loss were used to calculate WUE, the correlation between measured and calculated WUE was substantially improved, except for the water stress treatment. It is considered that, for root and tuber crops, RF and Δe are the major variables when Δ of single leaves is to be used for up-scaling to plant WUE.

Abbreviations

DM: dry matter

Δ: carbon isotope discrimination

LAR: leaf area ratio

pi: intercellular concentration of CO2

RF: root fraction

SLA: specific leaf area

SLN: specific leaf nitrogen

WUE: physiological water use efficiency

WUES: physiological water use efficiency based on shoot DM

References

  • 01 Araus,  J. L.,, Amaro,  T.,, Zuhair,  Y.,, and Nachit,  M. M.. (1997);  Effect of leaf structure and water status on carbon isotope discrimination in field-grown durum wheat.  Plant, Cell and Environment. 20 1484-1494
  • 02 van Arendonk,  J. J. C.,, Karanov,  E.,, Alexieva,  V.,, and Lambers,  H.. (1998);  Polyamine concenrations in four Poa species, differing in their maximum relative growth rate, grown with free access to nitrate and at limiting nitrate supply.  Plant-Growth-Regulation. 24 77-89
  • 03 van Arendonk,  J. J. C.,, Niemann,  G. J.,, Boon,  J. J.,, and Lambers,  H.. (1997);  Effects of nitrogen supply on the anatomy and chemical composition of leaves of four grass species belonging to the genus Poa, as determined by image-processing analysis and pyrolysis-mass spectrometry.  Plant, Cell and Environment. 20 881-897
  • 04 Asch,  F.,, Dingkuhn,  M.,, and Dorffling,  K.. (2000);  Salinity increases CO2 assimilation but reduces growth in field-grown irrigated rice.  Plant and Soil. 218 1-10
  • 05 Farquhar,  G. D.,, Ehleringer,  J. R.,, and Hubick,  K. T.. (1989);  Carbon isotope discrimination and photosynthesis.  Ann. Rev. Plant Physiol. Mol. Biol.. 40 503-537
  • 06 Farquhar,  G. D.,, Hubick,  K. T.,, Condon,  A. G.,, and Richards,  R. A.. (1988) Carbon isotope fractionation and plant water-use efficiency. Stable Isotopes in Ecological Research. Rundel, P. W., Ehleringer, J. R., and Nagy, K. A., eds. NY; Springer Verlag
  • 07 Farquhar,  G. D., and Richards,  R. A.. (1984);  Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes.  Aust. J. Plant Physiol.. 11 539-552
  • 08 Fredeen,  A. L.,, Gamon,  J. A.,, and Field,  C. B.. (1991);  Responses of photosynthesis and carbohydrate-partitioning to limitations in nitrogen and water availability in field-grown sunflower.  Plant Cell Environment. 14 963-970
  • 09 Guehl,  J. M.,, Fort,  C.,, and Ferhi,  A.. (1995);  Differential response of leaf conductance, carbon isotope discrimination and water use efficiency to nitrogen deficiency in maritime pine and pedunculate oak plants.  New Phytol.. 131 149-157
  • 10 Hatlitligil,  M. B.,, Olson,  R. A.,, and Compton,  W. A.. (1984);  Yield, water use and nutrient uptake of corn hybrids under varied irrigation and nitrogen regimes.  Fert. Res.. 5 321-333
  • 11 Heitholt,  J. J.. (1989);  Water use efficiency and dry matter distribution in nitrogen- and water-stressed winter wheat.  Agron. J.. 81 464-469
  • 12 Hermann,  M.. (1996) Starch noodles from edible canna (Canna edulis). . Progress in new crops. Janick, J., ed. Alexandria, VA; Am. Soc. Hort. Sci. pp. 507-508
  • 13 Hermann,  M.,, Uptmoor,  R.,, Freire,  I.,, and Montalvo,  J. L.. (1997) Crop growth and starch productivity of edible canna. Lima, Peru; The International Potato Center: Program Report 1995 - 1996. International Potato Center (CIP) pp. 295-301
  • 14 Hirose,  T.. (1988);  Modelling the relative growth rate as a function of plant nitrogen concentration.  Physiol. Plant.. 72 185-189
  • 15 Hubick,  K. T.. (1990);  Effect of nitrogen source and water limitation on growth, transpiration efficiency and carbon-isotope discrimination in peanut cultivars.  Aust. J. Plant Physiol.. 17 413-430
  • 16 Hubick,  K. T., and Farquhar,  G. D.. (1989);  Carbon isotope discrimination and the ratio of carbon gain to water lost in barley cultivars.  Plant, Cell and Environment. 12 795-804
  • 17 Hubick,  K. T.,, Farquhar,  G. D.,, and Shorter,  R.. (1986);  Correlation between water-use efficiency and carbon isotope discrimination in diverse peanut (Arachis) germplasm.  Aust. J. Plant Physiol.. 13 803-816.4
  • 18 Hotsonyame,  G. K., and Hunt,  L. A.. (1998);  Seeding data, photoperiod and nitrogen effects on specific leaf area of field-grown wheat.  Can. J. Plant Sci.. 78 51-61
  • 19 Kato,  M.,, Inthavongsa,  K.,, and Imai,  K.. (1989);  An estimation of leaf area in edible canna (Canna edulis Ker.).  Jap. J. Crop Sci.. 58 753-754
  • 20 Knight,  J. D.,, Livingston,  N. J.,, and Van Kessel,  C.. (1994);  Carbon isotope discrimination and water-use efficiency of six crops grown under wet and dryland conditions.  Plant Cell Environment. 17 173-179
  • 21 Masle,  J., and Farquhar,  G. D.. (1988);  Effects of soil strength on the relation of water-use efficiency and growth to carbon isotope discrimination in wheat seedlings.  Plant Physiol.. 86 32-38
  • 22 Mc Cullough,  D. E., and Hunt,  L. A.. (1993);  Mature tissue and crop canopy respiratory characteristics of rye, triticale and wheat.  Annals of Botany. 72 269-282
  • 23 Paez,  A.,, Gonzales,  O.,, Yrausquin,  X.,, Salazar,  A.,, and Casanova,  A.. (1995);  Water stress and clipping management effects on guineagrass. I. Growth and biomass allocation.  Agron. J.. 87 698-706
  • 24 Poorter,  H., and Remkes,  C.. (1990);  Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate.  Oecologia. 83 553-559
  • 25 Prior,  S. A., and Rogers,  H. H.. (1995);  Soybean growth response to water supply and atmospheric carbon dioxide enrichment.  J. Plant Nutrition . 18 617-636
  • 26 Ranjith,  S. A.,, Meinzer,  F. C.,, Perry,  M. H.,, and Thom,  M.. (1995);  Partitioning of carboxylase activity in nitrogen-stressed sugarcane and its relationship to bundle sheath leakiness to CO2, photosynthesis and carbon isotope discrimination.  Aust. J. Plant Physiol.. 22 903-911
  • 27 Rao,  R. C. N.,, Udaykumar,  M.,, Farquhar,  G. D.,, Taylor,  H. S.,, and Prasad,  T. G.. (1995);  Variation in carbon isotope discrimination and its relationship to specific leaf area and ribulose-1,5-bisphosphate carboxylase content in groundnut genotypes.  Aust. J. Plant Physiol.. 22 545-551
  • 28 Raschke,  K.. (1956);  Über die physikalischen Beziehungen zwischen Wärmeübergangszahl, Strahlungsaustausch, Temperatur und Transpiration eines Blattes.  Planta. 48 200-238
  • 29 Raven,  P. H.,, Evert,  R. F.,, and Eichhorn,  S. E.. (1999) Biology of Plants, 6th Edition. NY; Freeman and Company 944 pp.
  • 30 SAS. (1996) SAS/STAT Software Release 6.11. Cary, NC, USA; SAS Institute Inc.
  • 31 Stitt,  M., and Schulze,  D.. (1994);  Does Rubisco control the rate of photosynthesis and plant growth? An exercise in molecular ecophysiology.  Plant, Cell and Environment. 17 465-487
  • 32 Tomlinson,  P. B.. (1969) Commelinales-Zingiberalis. Anatomy of the monocotyledons. Metcalf, C. R., ed. Oxford at the Clarendon Press 446 pp.
  • 33 Virgona,  J. M., and Farquhar,  G. D.. (1996);  Genotypic variation in relative growth rate and carbon isotope discrimination in sunflower is related to photosynthetic capacity.  Aust. J. Plant Physiol.. 23 227-236

H. Brück

Institute of Plant Nutrition and Soil Science
University of Kiel

Olshausenstr. 40
24118 Kiel
Germany

Email: hbrueck@plantnutrition.uni-kiel.de

Section Editor: H. Rennenberg

    >