Subscribe to RSS
DOI: 10.1055/s-2002-35678
Zentrale Regulation der Nahrungsaufnahme
Central Control of Food Intake Manuskript nach einem Vortrag bei der gemeinsamen Jahrestagung von AKE, DGEM und GESKES Nutrition 2002 in Luzern vom 18. - 20.4.2002Publication History
Publication Date:
22 November 2002 (online)
Zusammenfassung
Die zentrale Regulation der Nahrungsaufnahme beruht auf der Verarbeitung von peripheren Signalen in einem Netzwerk unterschiedlicher Hirnareale. Dabei werden die in Relation zur Nahrungsaufnahme eintreffenden Signale subjektiv bewertet und führen zu adäquaten Reaktionen auf der Basis von früheren Erfahrungen und unter Berücksichtigung der momentanen Situation. Hypothalamische Kerngebiete wie der Nucleus arcuatus (ARC), der Nucleus paraventricularis (PVN) und der laterale Hypothalamus (LHA), aber auch der Nucleus tractus solitarii (NTS), die Area postrema (AP) und der Nucleus parabrachialis im Hirnstamm sowie die Amygdala, der Nucleus accumbens und mehrere andere Hirnareale sind an der Informationsverarbeitung beteiligt. Die übergeordnete Steuerung aller Prozesse und die Einleitung der bewussten Verhaltensreaktionen erfolgen durch die Hirnrinde. Die Information gelangt in das zentrale Netzwerk zum Teil über autonome, afferente Nerven, die im NTS umgeschaltet werden. Humorale Signale mit Bezug zur Nahrungsaufnahme werden durch die Chemosensoren der AP und im hypothalamischen ARC registriert. Insbesondere die anabolen (Neuropeptid Y und Agouti-related peptide) und katabolen Neuropeptidsysteme (Pro-opio-melanocortin, Cocaine und amphetamine-regulated transcript), welche den ARC mit dem PVN und dem LHA verbinden, wurden in den letzen Jahren gut charakterisiert. Diese Neuropeptidsysteme vermitteln die Effekte des Fettgewebshormons Leptin auf Nahrungsaufnahme und Energieabgabe, sie reagieren aber auch auf andere Hormone, Metabolite und Monoamine wie Serotonin. Trotz beträchtlicher Fortschritte bei der Aufklärung der zentralen Steuerung der Nahrungsaufnahme bleiben noch viele wichtige Fragen offen.
Abstract
The central control of food intake rests on the integration of peripheral signals in a network of different brain areas. The food intake-related signals are evaluated and trigger an adequate response which is modulated by the individual's previous experience and the situational context. Hypothalamic areas such as the arcuate nucleus (ARC), the paraventricular nucleus (PVN) and the lateral hypothalamic area (LHA), but also the nucleus of the solitari tract (NTS), the area postrema (AP) and the parabrachial nucleus in the hindbrain as well as the amygdala, the nucleus accumbens and several other brain areas are involved in the central control of food intake. Cortical structures control the information processing in these areas and initiate the conscious behavioral responses. Peripheral signals enter the central network in part through afferent nerves, which synapse in the NTS. Circulating food intake-related signals are detected by the AP and the ARC. Several anabolic (neuropeptide Y, agouti-related peptide) and catabolic neuropeptide systems (pro-opio-melanocortin, cocaine, amphetamine-regulated transcript), which link the ARC and other hypothalamic areas, have recently been well characterized. These neuropeptide systems mediate the effects of the adipose tissue hormone leptin on food intake and energy expenditure, but they also react to other hormones, metabolites, and even monoamines such as serotonin. Despite substantial progress towards an understanding of the central control of food intake during the last few years, several important questions remain still unanswered.
Schlüsselwörter
Hypothalamus - Neuropeptide - Monoamine - anabol - katabol - Leptin
Key words
Hypothalamus - neuropeptides - monoamines - anabolic - catabolic - leptin
Literatur
- 1 Tataranni P A, Gautier J F, Chen K W. et al . Neuroanatomical correlates of hunger and satiation in humans using positron emission tomography. Proc Natl Acad Sci USA. 1999; 96 4569-4574
-
2 Berthoud H-R.
An overview of neural pathways and networks involved in the control of food intake and selection. In: Berthoud H-R, Seeley RJ (eds) Neural and Metabolic Control of Macronutrient Intake. Boca Raton (FL); CRC Press LLC 1999: 361-387 - 3 Currie P J, Coscina D V. Diurnal variations in the feeding response to 8-OH-DPAT injected into the dorsal or median raphe. Neuroreport. 1993; 4 1105-1107
- 4 Simansky K J. Serotonergic control of the organization of feeding and satiety. Behav Brain Res. 1996; 73 37-42
- 5 Leibowitz S F, Alexander J T. Hypothalamic serotonin in control of eating behavior, meal size, and body weight. Biol Psych. 1998; 44 851-864
- 6 de Vry J, Schreiber R. Effects of selected serotonin 5-HT1 and 5-HT2 receptor agonists on feeding behavior: possible mechanisms of action. Neurosci Biobehav Rev. 2000; 24 341-353
- 7 Tecott L H, Sun L M, Akana S F. et al . Eating disorder and epilepsy in mice lacking 5-HT2C serotonin receptors. Nature. 1995; 374 542-546
- 8 Tang-Christensen M, Vrang N, Larsen P J. Glucagon-like peptide containing pathways in the regulation of feeding behaviour. Int J Obes. 2001; 25 S42-S47
- 9 Larsen P J, Tang-Christensen M, Jessop D S. Central administration of glucagon-like peptide-1 activates hypothalamic neuroendocrine neurons in the rat. Endocrinology. 1997; 138 4445-4455
- 10 Shioda S, Funahashi H, Nakajo S. et al . Immunohistochemical localization of leptin receptor in the rat brain. Neurosci Lett. 1998; 243 41-44
- 11 Schwartz M W, Woods S C, Porte D. et al . Central nervous system control of food intake. Nature. 2000; 404 661-671
- 12 Ono T, Nishijo H, Uwano T. Amygdala role in conditioned associative learning. Prog Neurobiol. 1995; 46 401-422
- 13 Berridge K C. Food reward: Brain substrates of wanting and liking. Neurosci Biobehav Rev. 1996; 20 1-25
- 14 Rada P V, Mark G P, Hoebel B G. Dopamine release in the nucleus accumbens by hypothalamic stimulation-escape behavior. Brain Res. 1998; 782 228-234
- 15 Kelley A E, Berridge K C. The neuroscience of natural rewards: Relevance to addictive drugs. J Neurosci. 2002; 22 3306-3311
- 16 Cabanac M. Maximization of pleasure, the answer to a conflict of motivations. Bull Psychon Soc. 1989; 27 526
-
17 Rolls E T.
Taste, olfactory, visual, and somatosensory representations of the sensory properties of foods in the brain, and their relation to the control of food intake. In: Berthoud H-R, Seeley RJ (eds) Neural and Metabolic Control of Macronutrient Intake. Boca Raton (FL); CRC Press LLC 1999: 247-262 - 18 Stanley B G, Kyrouli S E, Lampert S, Leibowitz S F. Neuropeptide-Y chronically injected into the hypothalamus - a powerful neurochemical inducer of hyperphagia and obesity. Peptides. 1986; 7 1189-1192
- 19 Billington C J, Briggs J E, Grace M, Levine A S. Effects of intracerebroventricular injection of neuropeptide Y on energy metabolism. Am J Physiol. 1991; 260 R321-R327
- 20 Voisey J, van Daal A. Agouti: from mouse to man, from skin to fat. Pigment Cell Res. 2002; 15 10-18
- 21 Morton G J, Schwartz M W. The NPY/AgRP neuron and energy homeostasis. Int J Obes. 2001; 25 S56-S62
- 22 Hagan M M, Benoit S C, Rushing P A. et al . Immediate and prolonged patterns of Agouti-related peptide-(83 - 132)-induced c-Fos activation in hypothalamic and extrahypothalamic sites. Endocrinology. 2001; 142 1050-1056
- 23 Kojima M, Hosoda H, Date Y. et al . Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999; 402 656-660
- 24 Kamegai J, Tamura H, Shimizu T. et al . Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and agouti-related protein mRNA levels and body weight in rats. Diabetes. 2001; 50 2438-2443
- 25 Nakazato M, Murakami N, Date Y. et al . A role for ghrelin in the central regulation of feeding. Nature. 2001; 409 194-198
- 26 Elmquist J K. Hypothalamic pathways underlying the endocrine, autonomic, and behavioral effects of leptin. Int J Obes. 2001; 25 S78-S82
- 27 Dubern B, Clement K, Pelloux V. et al . Mutational analysis of melanocortin-4 receptor, agouti-related protein, and alpha-melanocyte-stimulating hormone genes in severely obese children. J Ped. 2001; 139 204-209
- 28 Hinney A, Schmidt A, Nottebom K. et al . Several mutations in the melanocortin-4 receptor gene including a nonsense and a frameshift mutation associated with dominantly inherited obesity in humans. J Clin Endocrinol Metab. 1999; 84 1483-1486
- 29 Krude H, Biebermann H, Luck W. et al . Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nature Genetics. 1998; 19 155-157
- 30 Kristensen P, Judge M E, Thim L. et al . Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature. 1998; 393 72-76
- 31 Asnicar M A, Smith D P, Yang D D. et al . Absence of cocaine- and amphetamine-regulated transcript results in obesity in mice fed a high caloric diet. Endocrinology. 2001; 142 4394-4400
- 32 Challis B G, Yeo G SH, Farooqi I S. et al . The CART gene and human obesity - Mutational analysis and population genetics. Diabetes. 2000; 49 872-875
- 33 Zheng H Y, Corkern M M, Crousillac S M. et al . Neurochemical phenotype of hypothalamic neurons showing Fos expression 23 h after intracranial AgRP. Am J Physiology. 2002; 282 R1773-R1781
- 34 Olszewski P K, Wirth M M, Grace M K. et al . Evidence of interactions between melanocortin and opioid systems in regulation of feeding. Neuroreport. 2001; 12 1727-1730
- 35 Boutin J A, Suply T, Audinot V. et al . Melanin-concentrating hormone and its receptors: state of the art. Can J Physiol Pharmacol. 2002; 80 388-395
- 36 Marsh D J, Weingarth D T, Novi D E. et al . Melanin-concentrating hormone 1 receptor-deficient mice are lean, hyperactive, and hyperphagic and have altered metabolism. Proc Natl Acad Sci USA. 2002; 99 3240-3245
- 37 Hagan M M, Rushing P A, Benoit S C. et al . Opioid receptor involvement in the effect of AgRP-(83 - 132) on food intake and food selection. Am J Physiol. 2001; 280 R814-R821
- 38 Emond M, Schwartz G J, Ladenheim E E, Moran T H. Central leptin modulates behavioral and neural responsivity to CCK. Am J Physiol. 1999; 276 R1545-R1549
- 39 Kahler A, Eckel L A, Geary N. et al . Chronic administration of OB protein decreases spontaneous food intake by reducing meal size in male rats. Am J Physiol. 1998; 275 R180-R185
- 40 Poeschla B, Gibbs J, Simansky K J. et al . Cholecystokinin-induced satiety depends on activation of 5-HT1C-receptors. Am J Physiol. 1993; 264 R62-R64
- 41 Oomura Y, Ono T, Ooyama H, Wayner M. Glucose and osmosensitive Neurons of the rat hypothalamus. Nature. 1969; 222 282-284
-
42 Levin B E, Routh V H, Dunn-Meynell A A.
Glucosensing neurons in the central nervous system. In: Berthoud H-R, Seeley RJ (eds) Neural and Metabolic Control of Macronutrient Intake. Boca Raton (FL); CRC Press LLC 1999: 325-337 - 43 Sergeyev V, Broberger C, Gorbatyuk O, Hokfelt T. Effect of 2-mercaptoacetate and 2-deoxy-D-glucose administration on the expression of NPY, AGRP, POMC, MCH and hypocretin/orexin in the rat hypothalamus. Neuroreport. 2000; 11 117-121
- 44 Loftus T M, Jaworsky D E, Frehywot G L. et al . Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science. 2000; 288 2379-2381
- 45 Shimokawa T, Kumar M V, Lane M D. Effect of a fatty acid synthase inhibitor on food intake and expression of hypothalamic neuropeptides. Proc Natl Acad Sci USA. 2002; 99 66-71
- 46 Hay-Schmidt A, Helboe L, Larsen P J. Leptin receptor immunoreactivity is present in ascending serotonergic and catecholaminergic neurons of the rat. Neuroendocrinology. 2001; 73 215-226
- 47 Calapi G, Corica F, Corsonello A. et al . Leptin increases serotonin turnover by inhibition of brain nitric oxide synthesis. J Clin Invest. 1999; 104 975-982
- 48 Heisler L K, Cowley M A, Tecott L H. et al . Activation of central melanocortin pathways by fenfluramine. Science. 2002; 297 609-611
W. Langhans
Physiologie und Tierhaltung · Institut für Nutztierwissenschaften · ETH-Zürich
Schorenstraße 16
8603 Schwerzenbach · Schweiz
Email: wolfgang.langhsn@inw.agrl.ethz.ch