Geburtshilfe Frauenheilkd 2003; 63(2): 130-139
DOI: 10.1055/s-2003-37461
Übersicht

Georg Thieme Verlag Stuttgart · New York

Einsatz tumorassoziierter Antigene in der Immuntherapie und Immundiagnostik des Mammakarzinoms

Tumor-Associated Antigens as Tools in Immunodiagnostics and Immunotherapy of Breast CancerB. Gückel 1 , S. Meuer 2 , G. Bastert 3 , D. Wallwiener 1
  • 1Frauenklinik der Eberhard-Karls-Universität Tübingen
  • 2Institut für Immunologie der Ruprecht-Karls-Universität Heidelberg
  • 3Frauenklinik der Ruprecht-Karls-Universität Heidelberg
Further Information

Publication History

Eingang revidiertes Manuskript: 28. November 2002

Akzeptiert: 16. Dezember 2002

Publication Date:
25 February 2003 (online)

Zusammenfassung

In den letzten Jahren sind zahlreiche Immuntherapien gegen maligne Erkrankungen entwickelt worden. Dies ist darauf zurückzuführen, dass durch die wesentlichen Verbesserungen zellulärer, biochemischer und molekularer Techniken Immunantworten auf humoraler und zellulärer Ebene detaillierter analysiert und verstanden werden konnten. So konnte vor allem die Charakterisierung zahlreicher tumorassoziierter Antigene, die als Zielstrukturen immunologischer Abwehrprozesse dienen können, erfolgen.

Da beim Mammakarzinom der Zusammenhang zwischen minimaler Resttumorerkrankung und erneutem Auftreten des Tumors erkannt wurde, ist ein wichtiger Aspekt bei der Entwicklung neuer ergänzender Therapiekonzepte die Nutzung immunologischer Abwehrprozesse. Dabei ist das Ziel die erfolgreiche systemische Aktivierung tumorspezifischer T-Lymphozyten und die Ausbildung eines immunologischen Gedächtnisses im Patienten. Die Fähigkeit spezifischer T-Zellen zur Zirkulation würde die Erkennung und Zerstörung von Metastasen und Mikrometastasen ermöglichen, die sich gängigen Therapiekonzepten wie der Chemo- und Radiotherapie entziehen. Auch wenn die Zukunft therapeutischer Vakzinierungen sicher in der Adjuvanz liegen wird, haben erste Erfahrungen bei Melanomen und Nierenzellkarzinomen gezeigt, dass auch Patienten mit relativ hoher Tumorlast von Immuninterventionen profitieren können.

Diese Übersicht soll Fortschritte und Möglichkeiten in der Entwicklung verschiedener Vakzinierungsstrategien und deren Verlaufskontrollen verdeutlichen, die sich zumindest teilweise die Kenntnis tumorassoziierter Antigene zu Nutze machen. Dazu zählt deren direkter Einsatz als Peptidvakzine oder deren Kombinationen mit Adjuvanzien und antigenpräsentierenden Zellen. Neben definierten Peptidantigenen wird auch der Tumor selbst häufig als Antigenquelle genutzt, die zwar das gesamte Antigenspektrum eines individuellen Tumors abdeckt, jedoch weitgehend undefiniert ist. Hier werden beispielsweise genetisch modifizierte Tumorzellvarianten eingesetzt, die in der Lage sind tumorspezifische immunologische Toleranz zu durchbrechen und so die Induktion einer Immunabwehr bewirken sollen.

Abstract

Recent advances in tumor immunology - such as the characterization of tumor-associated antigens recognized by cellular effectors of the immune system and the improved understanding of antigen processing and presentation - have opened new perspectives on cancer immunotherapy. The most important new approaches are peptide vaccines and whole-cell vaccines (tumor-cell-based or immune-cell-based). The advantage of tumor-cell-based vaccines is that they comprise the complete antigen pool of an individual tumor for activating polyclonal immune responses. The introduction of genes encoding costimulatory molecules or cytokines aims to confer their immunostimulatory potential. The rationale for fusing tumor cells and antigen-presenting cells is that the hybrid cell will display the antigenicity of the tumor and the immunogenicity of the fusion partner. Since the antigenic repertoire of tumor-cell-based vaccines is usually not fully characterized, it is difficult to estimate their immunostimulatory potential. To be able to assess vaccine-induced immune reactions and clinical responses it will be necessary to at least partially characterize the antgenicity of cellular vaccines and to define surrogate parameters.

The continuously increasing number of HLA-restricted tumor antigens - also identified in breast cancer - allowed the development of antigen-defined vaccines. Direct in vivo administration of peptides in combination with adjuvants suitable for establishing effective immune responses or ex vivo loading of dendritic cells with tumor-specific epitopes are target-specific immunation approaches. Cocktails of synthetic peptide epitopes should permit targeting multiple antigens while avoiding the development of antigen-loss variants.

Most clinical phase I/II trials to date indicate that cellular or peptide-based vaccines are safe. But the individual studies are heterogenous and based on small numbers of patients. This review describes advances in vaccination strategies and treatment approaches based on tumor-assocated antigens.

Literatur

  • 1 Ballesta A M, Molina R, Filella X, Jo J, Gimenez N. Carcinoembryonic antigen in staging and follow-up of patients with solid tumors.  Tumor Biol. 1995;  16 32-41
  • 2 Barratt-Boyes S M. Making the most of mucin: a novel target for tumor immunotherapy.  Cancer Immunol Immunther. 1996;  43 142-151
  • 3 Brasseur F, Marchand M, Vanwijick R, Herin M, Lethe B, Chomez P, Boon T. Human gene MAGE-1, which codes for a tumor-rejection antigen, is expressed in some breast tumors.  Int J Cancer. 1992;  52 839-841
  • 4 Brinckerhoff L H, Lee W, Thompson M D, Craig L, Slingluff M D. Melanoma vaccines.  Curr Opin in Oncol. 2000;  12 163-173
  • 5 Brossart P. et al . Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells.  Blood. 2000;  96 3102-3108
  • 6 Brossart P, Stuhler G, Flad T, Stevanovic S, Rammensee H-G, Kanz L, Brugger W. Her-2/neu-derived peptides are tumor-associated antigens expressed by human renal cell and colon carcinoma lines are recognized by in vitro induced specific cytotoxic T lymphocytes.  Cancer Res. 1998;  58 732-736
  • 7 Cayeux S, Richter G, Noffz G, Dörken B, Blankenstein T. Influence of gene-modified (IL-7, IL-4, and B7) tumor cell vaccines on tumor antigen presentation.  J Immunol. 1997;  158 2834-2841
  • 8 Chen Y-T, Güre A O, Tsang S, Stockert E, Jäger E, Knuth A, Old L J. Identification of multiple cancer/testis antigens by allogeneic antibody screening of a melanoma cell line library.  Proc Natl Acad Sci USA. 1998;  95 6919-6923
  • 9 Cote R J, Rosen P O, Lesser M L. et al . Prediction of early relapse in patients with operable breast cancer by detection of occult bone marrow micrometastasis.  J Clin Oncol. 1991;  9 1749-1756
  • 10 Cox A L, Skipper J, Chen Y, Henderson R A, Darrow T L, Shabanowitz J, Engelhard V H, Hunt D F, Slingluff C H. Identification of a peptide recognized by five melanoma-specific human cytotoxic T cell lines.  Science. 1994;  264 716-719
  • 11 De Plaen E, Arden K, Traversani C, Gaforio J J, Szikora J P, de Smet C, Brasseur F, van der Bruggen P, Lethe B, Lurquin C, Brasseur R, Chomez P, de Bacher O, Cavenee W, Boon T. Structur, chromosomal localization and expression of the MAGE-family.  Immunogenetics. 1994;  40 360-369
  • 12 De Smet C, Lurquin C, van der Bruggen P, de Plaen E, Brasseur F, Boon T. Sequence and expression patterns of the human MAGE2 gene.  Immunogenetics. 1994;  39 121-129
  • 13 Diel I J, Kaufmann M, Goerner R. et al . Detection of tumor cells in bone marrow of patients with primary breast cancer: a prognostic factor for distant metastasis.  J Clin Oncol. 1992;  10 1534-1539
  • 14 Diel I J, Kaufmann M, Costa S D, Holle R, von Minckwitz G, Solomayer E F, Kaul S, Bastert G. Micrometastasis breast cancer cells in bone marrow at primary surgery: prognostic value in comparison with nodal status.  J Natl Cancer Inst. 1996;  88 1652-1658
  • 15 Disis M L, Calenoff E, McLaughlin G, Murphy A E, Chen W, Groner B, Jeschke M, Lydon N, McGlynn E, Livingston R B, Moe R, Cheever M A. Existent T-cell and antibody immunity to HER-2/neu protein in patients with breast cancer.  Cancer Res. 1994;  54 16-20
  • 16 Dunbar P R, Ogg G S, Chen J, Rust N, van-der-Bruggen P, Cerundolo V. Direct isolation, phenotyping and cloning of low-frequency antigen-specific cytotoxic T lymphocytes from peripheral blood.  Curr Biol. 1998;  8 413-416
  • 17 Feuerer M, Beckhove P, Bai L, Solomayer E-F, Bastert G, Diel I J, Pedain C, Oberniedermayr M, Schirrmacher V, Umansky V. Therapy of human tumors in NOD/SCID mice with patient-derived reactivated memory T cells from bone marrow.  Nat Med. 2001;  7 452-458
  • 18 Fisk B, Tracy L B, Wharton J T, Ioannides C G. Identification of an immunodominant peptide of HER2/neu protooncogene recognized by ovarian tumor specific T lymphocyte lines.  J Exp Med. 1994;  181 2109
  • 19 Gaudernack G, Gjertsen M K. Combination of GM-CSF with antitumour vaccine strategies.  Eur J Cancer. 1999;  35 (Suppl 3) S33-35
  • 20 Gilboa E. The makings of a tumor rejection antigen.  Immunity. 1999;  11 263-270
  • 21 Gückel B, Meyer G C, Rudy W, Batrla R, Meuer S C, Bastert G, Wallwiener D, Moebius U. Interleukin 12 requires initial CD80 mediated T cell activation to support immune responses towards human breast and ovarian carcinoma.  Cancer Gene Ther. 1999;  6 228-237
  • 22 Harbeck N, Untch M, Pache L, Eiermann W. Tumour cell detection in the bone marrow of breast cancer patients at primary therapy: results of a 3-year median follow-up.  Br J Cancer. 1994;  69 566-571
  • 23 Harris J, Morrow M, Norton L. Malignant tumors of the breast. DeVita V, Hellman S, Rosenberg Cancer - Principles and Practice of Oncology. Philadelphia; JB Lippincott Co. 1997
  • 24 Höltl L, Rieser C, Papesh C, Ramoner R, Bartsch G, Thurnher M. CD83 + blood dendritic cells as a vaccine for immunotherapy of metastatic renal-cell cancer.  Lancet. 1996;  352 1358
  • 25 Hurwitz A A, Kwon E D, Elsas A. Costimulatory wars: the tumor menace.  Curr Opp Immunol. 2000;  12 589-596
  • 26 Jäger E, Jäger D, Knuth A. Strategies for the development of vaccines to treat breast cancer.  Rec Results Cancer Res. 1998;  152 94-102
  • 27 Jäger E, Nagata Y, Gnjatic S, Wada H, Stockert E, Karbach J, Dunbar P R, Lee S Y, Jungbluth A, Jäger D, Arand M, Ritter G, Cerundolo V, Dupont B, Chen Y-T, Old L J, Knuth A. Monitoring CD8 T cell responses to NY-ESO-1: Correlation of humoral and cellular immune responses.  PNAS. 2000;  97 4760-4765
  • 28 Jäger E, Ringhoffer M, Altmannsberger M, Arand M, Karbach J, Jäger D, Oesch F, Knuth A. Immunoselection in vivo: independent loss of MHC class I and melanocyte differentiation antigen expression in metastatic melanoma.  Int J Cancer. 1997;  71 142-147
  • 29 Jonuleit H, Kuhn U, Muller G, Steinbrink K, Paragnik L, Schmitt E, Knop J, Enk A H. Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum free conditions.  Eur J Immunol. 1997;  27 3135-3142
  • 30 Kammula U S, Marincola F M, Rosenberg S A. Real-time quantitative polymerase chain reaction assessment of immune reactivity in melanoma patients after tumor peptide vaccination.  J Natl Cancer Inst. 2000;  92 1336-1344
  • 31 Kawamoto M, Shichijo S, Imai Y, Imaizumi T, Koga T, Yanaga H, Ithoh K. Expression of the SART-1 tumor rejection antigen in breast cancer.  Int J Cancer. 1999;  80 64-67
  • 32 Kawashima I, Tsai V, Southwood S, Takesako K, Sette A, Celis E. Identification of HLA-A3-restricted cytotoxic T lymphocyte epitopes from carcinoembryotic antigen and HER2/neu by primary in vitro stimulation with peptide-pulsed dendritic cells.  Cancer Res. 1999;  59 431-435
  • 33 Knight B C, Souberbielle B E, Rizzardi G P, Ball S E, Dalgleish A G. Allogeneic murine melanoma cell vaccine: a model for the development of human allogeneic cancer vaccine.  Melanoma Res. 1996;  6 299-306
  • 34 Kugler A, Stuhler G, Walden P, Zöller G, Zobywalski A, Brossart P, Trefzer U, Ullrich S, Müller C A, Becker V, Gross A J, Hemmerlein B, Kanz L, Müller G A, Ringert R H. Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids.  Nat Med. 2000;  6 332-336
  • 35 Lee K H, Wang E, Nielsen M B, Wunderlich J, Migueles S, Connors M, Steinberg S M, Rosenberg S A, Marincola F M. Increased vaccine-specific T cell frequency after peptide-based vaccination correlates with increased susceptibility to in vitro stimulation but does not lead to tumor regression.  J Immunol. 1999;  163 6292-6300
  • 36 Lethe B, Lucas S, Michaux L, De Smet C, Godelaine D, Serrano A, de Plaen E, Boon T. LAGE-1, a new gene with tumor specificity.  Int J Cancer. 1998;  76 903-908
  • 37 Linehan D C, Goedegebuure P S, Peoples G E, Rogers S O, Eberlein T J. Tumor-specific and HLA-A2-restricted cytolysis by tumor-associated lymphocytes in human metastatic breast cancer.  J Immunol. 1995;  155 4486
  • 38 Loeb L A. A mutator phenotype in cancer.  Cancer Res. 2001;  61 3230-3239
  • 39 Lucas S, De Smet C, Arden K C, Viars C S. Identification of a new MAGE gene with tumor specific expression by representational difference analysis.  Cancer Res. 1998;  58 743-752
  • 40 Mach N, Dranoff G. Cytokine-secreting tumor cell vaccines.  Curr Op Immunol. 2000;  12 571-575
  • 41 Mackensen A, Herbst B, Chen J L, Köhler G, Noppen C, Herr W, Spagnoli C, Cerundolo V, Lindemann A. Phase I study in melanoma patients of a vaccine with peptide-pulsed dendritic cells generated in vitro from CD34 + hematopoietic progenitor cells.  Int J Cancer. 2000;  86 385-392
  • 42 Mansi J L, Berger U, Easton D. et al . Micrometastases in bone marrow in patients with primary breast cancer: evaluation as an early predictor of bone metastases.  Br Med J. 1987;  295 1093-1096
  • 43 Mansi J L, Easton D, Berger U. et al . Bone marrow micrometastases in primary breast cancer: Prognostic significance after 6 years' follow-up.  Eur J Cancer. 1991;  27 1552-1555
  • 44 Ménard S, Squicciarini P, Luini A. et al . Immunodetection of bone marrow micrometastases in breast carcinoma patients and its correlation with primary tumour prognostic features.  Br J Cancer. 1994;  69 1126-1129
  • 45 Meyer G C, Gückel B, Batrla R, Meuer S C, Wallwiener D, Moebius U. The potential of CD80 transfected human mamma carcinoma cells to induce peptide specific T lymphocytes in an allogeneic HLA-A2. 1+ matched situation.  Cancer Gene Ther. 1999;  6 283-288
  • 46 Nestle F O, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells.  Nat Med. 1998;  3 328-332
  • 47 Offringa R, van der Burg S, Ossendorp F, Toes R EM, Melief C JM. Design and evaluation of antigen-specific vaccination strategies against cancer.  Curr Op Immunol. 2000;  12 576-582
  • 48 Pamer E G, Harty J T, Bevan M J. Precise prediction of a dominant class I MHC-restricted epitope of Listeria monocytogenes.  Nature. 1991;  353 852-855
  • 49 Pascolo S, Schirle M, Gückel B, Dumrese T, Stumm S, Kayser S, Moris A, Wallwiener D, Rammensee H G, Stevanović S. A MAGE-A1 HLA-A*0201 epitope identified by mass spectrometry.  Cancer Res. 2001;  61 4072-4077
  • 50 Peoples G E, Goedegebuure P S, Smith R, Linehan D C, Yoshino I, Eberlein T J. Breast and ovarian cancer-specific cytotoxic T lymphocytes recognize the same HER2/neu-derive peptide.  PNAS USA. 1995;  92 432
  • 51 Petru E, Schmähl D. No relevant influence on overall survival time in patients with metastatic breast cancer undergoing combination chemotherapy.  Cancer Res Clin Oncol. 1998;  114 183-185
  • 52 Pittet M J, Valmori D, Dunbar P R, Speiser D E, Lienard D, Lejeune F, Fleischhauer K, Cerundolo V, Cerottini J C, Romero P. High frequencies of naive Melan-A/MART-1-specific CD8(+) T cells in a large proportion of human histocompatibility leukocyte antigen (HLA)-A2 individuals.  J Exp Med. 1999;  190 705-715
  • 53 Ridge J P, Di Rosa F, Matzinger P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell.  Nature. 1998;  393 474-477
  • 54 Rosenberg S A, Packard B S, Aebersold P M, Solomon D, Topalian S L, Toy S T, Simon P, Lotze M T, Yang J C, Seipp C A. et al . Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report.  N Engl J Med. 1988;  319 1676-1680
  • 55 Rosenberg S A, Yang J C, Schwartzentruber D J, Hwu P, Marcincola F M, Topalian S L, Restifo N P, Dudley M E, Schwarz S L, Spiess P J, Wunderlich J R, Parkhurst M R, Kawakami Y, Seipp C A, Einhorn J H, White D E. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma.  Nat Med. 1998;  3 321-327
  • 56 Rötschke O, Falk K, Stevanovic S, Jung G, Walden P, Rammensee H G. Exact prediction of a natural T cell epitope.  Eur J Immunol. 1991;  21 2891-2894
  • 57 Russo V, Traversari C, Verrecchia A, Mottolese M, Natali P G, Bordignon C. Expression of the MAGE gene family in primary and metastatic human breast cancer: implications for tumor antigen-specific immunotherapy.  Int J Cancer. 1995;  64 216-221
  • 58 Sahin U, Türeci O, Schmitt H, Cochlovius B, Johannes T, Schmits R, Stenner F, Luo G, Schobert I, Pfreudschuh M. Human neoplasms elicit multiple specific immune responses in the autologous host.  Proc Natl Acad Sci USA. 1995;  92 11810-11813
  • 59 Schirle M, Keilholz W, Weber B, Gouttefangeas C, Dumrese T, Becker H D, Stevanovic S, Rammensee H G. Identification of tumor-associated MHC class I ligands by a T cell-independent approach.  J Eur Immunol. 2000;  30 2216-2225
  • 60 Schoof D D, Smith J W, Disis M L, Brant-Zawadski P, Wood W, Doran T, Johnson E, Urba W J. Immunization of metastatic breast cancer patients with CD80-modified breast cancer cells and GM-CSF.  Adv Exp Med Biol. 1998;  451 511-518
  • 61 Schuler G, Romani N. Generation of mature dendritic cells from human blood. An improved method with special regard to clinical applicability.  Adv Exp Med Biol. 1997;  417 7-13
  • 62 Schwarz R H. A culture model for T cell clonal anergy.  Science. 1990;  248 1349-1356
  • 63 Smyth M J, Godfrey D I, Trapani J A. A frehs look at tumor immunosurveillance and immunotherapy.  Nat Immunol. 2001;  2 239-299
  • 64 Tilkin A-F, Lubin R, Soussi T, Lazar V, Janin N, Mathieu M-C, Lefrere I, Carlu C, Roy M, Kayibanda M, Bellet D, Guillet J-G, Bresac de Paillerets B. Primary proliferative T cell response to wild-type p53 protein in patients with breast cancer.  Eur J Immunol. 1995;  25 1765-1769
  • 65 Toso J F, Oei C, Oshidari F, Tartaglia J, Paoletti E, Lyerly H K, Talib S, Weinhold K J. MAGE-1-specific precursor cytotoxic T-lymphocytes present among tumor-infiltrating lymphocytes from a patient with breast cancer: characterization and antigen-specific activation.  Cancer Res. 1996;  56 16-20
  • 66 Trefzer U, Weingart G, Chen Y, Herbert G, Adrian K, Winter H, Audring H, Guo Y, Sterry W, Walden P. Hybrid cell vaccination for cancer immune therapy: first clinical trial with metastatic melanoma.  Int J Cancer. 2000;  85 618-626
  • 67 Türeci O, Chen Y T, Sahin U, Gure A O, Zwick C, Villena C, Tsang S, Seitz G, Old L J, Pfreudschuh M. Expression of SSX genes in human tumors.  Int J Cancer. 1998;  77 19-23
  • 68 van den Eynde B J, Boon T. Tumor antigens recognized by T lymphocytes.  Int J Clin Lab Res. 1997;  27 81-86
  • 69 van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, Knuth A, Boon T. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma.  Science. 1991;  254 1643-1647
  • 70 Vonderheide R H, Hahn W C, Schultze J L, Nadler L M. The telomerase catalytic subunit is a widly expressed tumor-associated antigen recognized by cytolytic T lymphocytes.  Immunity. 1999;  10 673-679

Dr. rer. nat. Brigitte Gückel

Frauenklinik der Eberhard-Karls-Universität Tübingen

Calwerstraße 7

72076 Tübingen

Email: brigitte.gueckel@uni-tuebingen.de