Subscribe to RSS
DOI: 10.1055/s-2003-40723
Georg Thieme Verlag Stuttgart · New York
The Comparative Analysis of Osmotins and Osmotin-Like PR-5 Proteins
Publication History
Publication Date:
21 July 2003 (online)
Abstract
One of the ways that plants respond to biotic and/or abiotic stress factors is the accumulation of pathogenesis-related proteins of class 5 (PR-5), which are evolutionary conserved in the plant kingdom. Within the PR-5 family, a distinct subgroup of osmotin and closely related proteins has been characterized. In contrast to the extracellular forms of PR-5 proteins, osmotins presumably accumulate in the vacuole of the cell. They contain a C-terminal propeptide that is considered to be a determinant for vacuolar targeting. The comparison of the three-dimensional structure of tobacco PR-5 d with the sequences of some osmotins showed that the proteins consist of three conserved domains, with the acidic cleft between domains I and II. Besides the constitutive species and tissue-specific presence, the osmotins are also induced by several abiotic and biotic stresses. Among them, fungal infections can elicit osmotin gene expression, and most known proteins from the family have antifungal activity in in vitro assays. In agreement with the osmotin structure and data on the activity of similar proteins, a two-step mechanism, which involves reaction of osmotins with the fungal wall and the permeabilization of fungal membranes, is discussed.
Key words
PR-5 - structure - gene expression - mechanism of antifungal activity
References
- 1 Abad L. R., Paino D'Urzo M., Lin D., Narasimhan M. L., Renveni M., Zhu J. K., Niu X., Singh N. K., Hasegawa P. M., Bressan R. A.. Antifungal activity of tobacco osmotin has specificity and involves plasma membrane permeabilization. Plant Science. (1996); 118 11-23
- 2 Anžlovar S.. Permeabilizing activity of 25-kDa protein from flax seeds (Linum usitatissimum L.) on liposome membranes. M. Sc. Thesis. Ljubljana; University of Ljubljana (1997): 1-99
- 3 Anžlovar S.. Analysis of gene for PR-5 protein from flax. Ph. D. Thesis. Ljubljana; University of Ljubljana (2002): 1-143
- 4 Anžlovar S., Dalla Serra M., Dermastia M., Menestrina G.. Membrane permeabilizing activity of pathogenesis-related protein linusitin from flax seed. Mol. Plant-Microbe Interactions. (1998); 7 610-617
- 5 Athanasiadis A., Anderluh G., Maček P., Turk D.. Crystal structure of the soluble form of equinatoxin II, a pore-forming toxin from the sea anemone Actinia equina. . Structure. (2001); 9 341-346
- 6 Batalia M. A., Monzingo A. F., Ernst S., Roberts W., Robertus J. D.. The crystal structure of the antifungal protein zeamatin, a member of the thaumatin-like, PR-5 protein family. Nat. Struct. Biol.. (1996); 3 19-23
- 7 Bjellqvist B., Basse B., Olsen E., Celis J. E.. Reference points for comparisons of two-dimensional maps of proteins from different human cell types defined in a pH scale where isoelectric points correlate with polypeptide compositions. Electrophoresis. (1994); 15 529-539
- 8 Bjellqvist B., Hughes G. J., Pasquali Ch., Paquet N., Ravier F., Sanchez J.-Ch., Frutiger S., Hochstrasser D. F.. The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophoresis. (1993); 14 1023-1031
- 9 Bol J. F., Linthorst H. J. M., Cornelissen B. J. C.. Plant pathogenesis-related proteins induced by virus infection. Ann. Rev. Phytopathol.. (1990); 28 113-138
- 10 Borgmeyer J. R., Smith C. E., Huynh Q. K.. Isolation and characterization of a 25 kDa antifungal protein from flax seeds. Biochem. Biophys. Res. Communications. (1992); 187 480-487
- 11 Brederode F. T., Linthorst H. J. M., Bol J. F.. Differential induction of acquired resistance and PR gene expression in tobacco by viral infection, ethephon treatment, UV light and wounding. Plant Mol. Biol.. (1991); 17 1117-1125
- 12 Bussey H.. K1 killer toxin, a pore-forming protein from yeast. Mol. Microbiol.. (1991); 5 2339-2343
- 13 Capelli N., Diogon T., Greppin H., Simon P.. Isolation and characterization of a cDNA clone encoding an osmotin-like protein from Arabidopsis thaliana. . Gene. (1997); 191 51-56
- 14 Cheong N. E., Choi Y. O., Kim W. Y., Bae I. S., Cho M. J., Hwang I., Kim J. W., Lee S. Y.. Purification and characterization of an antifungal PR-5 protein from pumpkin leaves. Mol. Cells. (1997 a); 7 214-219
- 15 Cheong N. E., Choi Y. O., Kim W. Y., Kim S. C., Cho M. J., Lee S. Y.. Purification of an antifungal PR-5 protein from flower buds of Brassica campestris and cloning of its gene. Physiologia Plantarum. (1997 b); 101 583-590
- 16 Coca M. A., Damsz B., Yun D.-J., Hasgawa P. M., Bressan R. A., Narasimhan M. L.. Heterotrimeric G-proteins of a filamentous fungus regulate cell wall composition and susceptibility to a plant PR-5 protein. Plant J.. (2000); 22 61-69
- 17 Cvetković A., Gorjanović S., Hranisavljević J., Vučelić D.. Isolation and characterization of pathogenesis-related proteins from brewer's barley grain. J. Serbian Chem. Soc.. (1997); 62 51-56
- 18 Drenth J., Low B. W., Richardson J. R., Wright C. S.. The toxin-agglutinin fold. J. Biol. Chem.. (1980); 255 2652-2655
- 19 Frigerio L., Foresti O., Hernandes Felipe D., Neuhaus J.-M., Vitale A.. The C-terminal tetrapeptide of phaseolin is sufficient to target green fluorescent protein to the vacuole. J. Plant Physiol.. (2001); 1158 499-503
- 20 Garcia-Casado G., Collada C., Allona I., Soto A., Casado R., Rodriguez-Cerezo E., Gomez L., Aragoncillo C.. Characterization of an apoplastic basic thaumatin-like protein from recalcitrant chestnut seeds. Physiologia Plantarum. (2000); 110 172-180
- 21 Glazebrook J.. Genes controlling expression of defense responses in arabidopsis - 2001 status. Current Op. Plant Biol.. (2001); 4 301-308
- 22 Graham J. S., Burkhart W., Xiong J., Gillikin J. W.. Complete amino acid sequence of soybean leaf P21. Plant Physiol.. (1992); 98 163-165
- 23 Grenier J., Potvin C., Trudel J., Asselin A.. Some thaumatin-like proteins hydrolyse polymeric β-1,3-glucans. Plant J.. (1999); 19 473-480
- 24 Grillo S., Leone A., Xu Y., Tucci M., Francione R., Hasegawa P. M., Monti L., Bressan R. A.. Control of osmotin gene expression by ABA and osmotic stress in vegetative tissues of wild-type and ABA-deficient mutants of tomato. Physiologia Plantarum. (1995); 93 498-504
- 25 Hammond-Kosack K. E., Jones J. D. G.. Resistance gene-dependent plant defense responses. Plant Cell. (1996); 8 17773-17791
- 26 Hejgaard J., Jacobsen S., Svendsen J.. Two antifungal thaumatin-like proteins from barley grain. FEBS Letters. (1991); 291 127-131
- 27 Helleboid S., Hendriks T., Bauw G., Inze D., Vasseur J., Hilbert J.. Three major somatic embryogenesis related proteins in Cichorium identified as PR proteins. J. Experimen. Botany. (2000); 51 1189-1200
- 28 Hu X., Reddy A. S.. Nucleotide sequence of a cDNA clone encoding a thaumatin-like protein from Arabidopsis. . Plant Physiol.. (1995); 107 305-306
- 29 Hu X., Reddy A. S.. Cloning and expression of a PR-5-like protein from Arabidopsis: inhibition of fungal growth by bacterial expressed protein. Plant Mol. Biol.. (1997); 34 949-959
- 30 Hutchins K., Bussey H.. Cell wall receptor for yeast killer toxin: involvement of (1-6)-β-D-glucan. J. Bacteriol.. (1983); 154 161-169
- 31 Huynh Q. K., Borgmeyer J. R., Zobel J. F.. Isolation and characterization of a 22 kDa protein with antifungal properties from maize seeds. Biochem. Biophys. Res. Communications. (1992); 182 1-5
- 32 Ibeas J. I., Lee H., Damsz B., Presad D. T., Pardo J. M., Hasegawa P. M., Bressan R. A., Narasimhan M. L.. Fungal cell wall phosphomannans faciliate the toxic activity of a plant PR-5 protein. Plant J.. (2000); 23 375-383
- 33 Igarashi D., Koiwa H., Sato F., Ito N., Harada K., Kobayashi K.. Functional similarities of recombinant OLP and cytokinin-binding protein 2. Bioscience, Biotechnology and Biochemistry. (2001); 65 2806-2810
- 34 Kim H., Mun J.-H., Byun B. H., Hwang H.-J., Kwon Y. M., Kim S.-G.. Molecular cloning and characterization of the gene encoding osmotin protein in Petunia hybrida. . Plant Science. (2002); 162 745-752
- 35 King G. J., Turner V. A., Hussey C. E., Wurtele E. S., Lee S. M.. Isolation and characterization of a tomato cDNA clone which codes for a salt-induced protein. Plant Mol. Biol.. (1988); 10 401-412
- 36 Kitajima S., Koyama T., Yamada, Y, and Sato F.. Constitutive expression of the neutral PR-5 (OLP, PR-5 d) gene in roots and cultured cells of tobacco is mediated by ethylene-responsive cis-element AGCCGCC. Plant Cell Reports. (1998); 18 173-179
- 37 Ko T.-P., Day J., Greenwood A., McPherson A.. Structures of three crystal forms of the sweet protein thaumatin. Acta Crystallographica Section D - Biological Crystallography. (1994); 50 813-825
- 38 Koiwa H., Kato H., Nakatsu T., Oda J., Yamada Y., Sato F.. Purification and characterization of tobacco pathogenesis-related protein PR-5 d, an antifungal thaumatin-like protein. Plant Cell Physiol.. (1997); 38 783-791
- 39 Koiwa H., Kato H., Nakatsu T., Oda J., Yamada Y., Sato F.. Crystal structure of tobacco PR-5 d protein at 1.8 Å resolution reveals a conserved acidic cleft structure in antifungal thaumatin-like proteins. J. Mol. Biol.. (1999); 286 1137-1145
- 40 Koiwa H., Sato F., Yamada Y.. Characterization of accumulation of tobacco PR-5 proteins by IEF-immunoblot analysis. Plant Cell Physiol.. (1994); 35 821-827
- 41 Kononowicz A. K., Nelson D. E., Singh N. K., Hasegawa P. M., Bressan R. A.. Regulation of the osmotin gene promoter. Plant Cell. (1992); 4 513-524
- 42 Kuboyama T., Yoshida K. T., Takeda G.. An acidic 39-kDa protein secreted from stigmas of tobacco has an amino-terminal motif that is conserved among thaumatin-like proteins. Plant Cell Physiol.. (1997); 38 91-95
- 43 Kurzweilova H., Sigler K.. Kinetic studies of killer toxin K1 binding to yeast cells indicate two receptor populations. Arch. Microbiol.. (1994); 162 211-214
- 44 LaRosa P. C., Chen Z., Nelson D. E., Singh N. K., Hasegawa P. M., Bressan R. A.. Osmotin gene expression is posttranscriptionally regulated. Plant Physiol.. (1992); 100 409-415
- 45 LaRosa P. C., Handa A. K., Hasegawa P. M., Bressan R. A.. Abscisic acid accelerates adaptation of cultured cells to salt. Plant Physiol.. (1985); 79 138-142
- 46 Liu D., Raghothama K. G., Hasegawa P. M., Bressan R. A.. Osmotin overexpression in potato delays development of disease symptoms. Proceedings of the National Academy of Sciences of the USA. (1994); 91 1888-1892
- 47 Liu D., Rhodes D., Paino D'Urzo M., Xu Y., Narasimhan M. L., Hasegawa P. M., Bressan R. A., Abad L.. In vivo and in vitro activity of truncated osmotin that is secreted into the extracellular matrix. Plant Science. (1996); 121 123-131
- 48 Malehorn D. E., Borgmeyer J. R., Smith C. E., Shah D. M.. Characterization and expression of an antifungal zeamatin-like protein (Zlp) gene from Zea mays. . Plant Physiol.. (1994); 106 1471-1481
- 49 Martin G. B.. Functional analysis of plant disease resistance genes and their downstream effectors. Current Op. Plant Biol.. (1999); 2 273-279
- 50 Melchers, l. S., Sela-Burlage M. B., Vloemans S. A., Woloshuk C. P., Van Roekel J. S. C., Pen J., Van den Elzen P. J. M., Cornelissen B. J. C.. Extracellular targeting of the vacuolar tobacco protein, AP24, chitinase and β-1,3 glucanase in transgenic plants. Plant Mol. Biol.. (1993); 21 583-593
- 51 Monot C., Pajot E., Le Corre D., Silue D.. Induction of systemic resistance in broccoli (Brassica oleracea var. botrytis) against downy mildew (Peronospora parasitica) by avirulent isolates. Biological Control. (2002); 24 75-81
- 52 Narasimhan M. L., Damsz B., Coca M. A., Ibeas J. I., Yun D. J., Pardo J. M., Hasegawa P. M., Bressan R. A.. A plant defense response effector induces microbial apoptosis. Mol. Cell. (2001); 8 921-930
- 53 Neale A. D., Wahleithner J. A., Lund M., Bonnett H. T., Kelly A., Meeks-Wagner D. R., Peacock W. J., Dennis E. S.. Chitinase, β-1,3-glucanase, osmotin and extensin are expressed in tobacco explant during flower formation. Plant Cell. (1990); 2 673-684
- 54 Nelson D. E., Raghothama K. G., Singh N. K., Hasegawa P. M., Bressan R. A.. Analysis of structure and transcriptional activation of an osmotin gene. Plant Mol. Biol.. (1992); 19 577-588
- 55 Newton S. S., Duman J. G.. An osmotin-like cryoprotective protein from the bittersweet nightshade Solanum dulcamara. . Plant Mol. Biol.. (2000); 44 581-589
- 56 Nielsen H., Engelbrecht J., Brunak S., Von Heijne G.. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Engineering. (1997); 10 1-6
- 57 Nissen-Meyer J., Nes I. F.. Ribosomally synthesized antimicrobial peptides, their function, structure, biogenesis, and mechanism of action. Arch. Microbiol. (1997); 167 67-77
- 58 Ogata C. M., Gordon P. F., de Vos A. M., Kim S. H.. Crystal structure of a sweet tasting protein, thaumatin I, at 1.65 Å resolution. J. Mol. Biol.. (1992); 228 893-908
- 59 Ohme-Takagi M., Shinshi H.. Ethylene-inducible DNA-binding proteins that interact with an ethylene-responsive element. Plant Cell. (1995); 7 173-182
- 60 Osmond R. I. W., Hrmova M., Fonatine F., Imberty A., Fincher G. B.. Binding interactions between barley thaumatin-like proteins and (1,3)-β-D-glucans. Eur. J. Biochem.. (2001); 268 4190-4199
- 61 Pajot E., Le Corre D., Silue D.. Phytogard® and DL-beta-amino butyric acid (BABA) induce resistance to downy mildew (Bremia lactucae) in lettuce (Lactuca sativa L.). Eur. J. Plant Pathol.. (2001); 107 861-869
- 62 Pressey R.. Two isoforms of NP24, a thaumatin-like protein in tomato fruit. Phytochemistry. (1997); 44 1241-1245
- 63 Raghothama K. G., Liu D., Nelson D. E., Hasegawa P. M., Bressan R. A.. Analysis of an osmotically-regulated pathogenesis-related osmotin gene promoter. Plant Mol. Biol.. (1993); 23 1117-1128
- 64 Raghothama K. G., Maggio A., Narasimhan M. L., Kononowicz A. K., Wang G., Paino D'Urzo M., Hasegawa P. M., Bressan R. A.. Tissue-specific activation of the osmotin gene by ABA, C2H4 and NaCl involves the same promoter region. Plant Mol. Biol.. (1997); 34 393-402
- 65 Regalado A. P., Ricardo C. P. P.. Study of the intracellular fluid of healthy Lupinus albus organs. Plant Physiol.. (1996); 110 227-232
- 66 Reiss E., Horstmann C.. Drechslera teres - infected barley (Hordeum vulgare L.) leaves accumulate eight isoforms of thaumatin-like proteins. Physiol. Mol. Plant Pathol.. (2001); 58 183-188
- 67 Roberts W. K., Selitrennikoff C. P.. Zeamatin, an antifungal protein from maize with membrane-permeabilizing activity. J. General Microbiol.. (1990); 136 1771-1778
- 68 Rodrigo I., Vera P., Tornero P., Hernandez-Yago J., Conejero V.. cDNA cloning of viroid-induced tomato pathogenesis-related protein P23. Plant Physiol.. (1993); 102 939-945
- 69 Sato F., Kitajima S., Koyama T., Yamada Y.. Ethylene-induced gene expression of osmotin-like protein, a neutral isoform of tobacco PR-5, is mediated by the AGCCGCC cis-sequence. Plant Cell Physiol.. (1996); 37 249-255
- 70 Sato F., Koiwa H., Sakai Y., Kato N., Yamada Y.. Synthesis and secretion of tobacco neutral PR-5 protein by transgenic tobacco and yeast. Biochem. Biophys. Res. Communications. (1995); 211 909-913
- 71 Schmitt M. J., Compain P.. Killer toxin-resistant kre12 mutants of Saccharomyces cerevisiae, genetic and biochemical evidence for a secondary K1 membrane receptor. Arch. Microbiol.. (1995); 164 435-443
- 72 Shih C.-Y., Wu J., Jia S., Khan A. A., Ting K.-L., Shih D. S.. Purification of an osmotin-like protein from the seeds of Benincasa hispida and cloning of the gene encoding this protein. Plant Science. (2001); 160 817-826
- 73 Singh N. K., Handa A. K., Hasegawa P. M., Bressan R. A.. Proteins associated with adaptation of cultured tobacco cells to NaCl. Plant Physiol.. (1985); 79 126-137
- 74 Singh N. K., Bracker C. A., Hasegawa P. M., Handa A. K., Buckel S., Hermodson M. A., Pfankoch E., Regnier F. E., Bressan R. A.. Characterization of osmotin. Plant Physiol.. (1987 a); 85 529-536
- 75 Singh N. K., LaRosa P. C., Handa A. K., Hasegawa P. M., Bressan R. A.. Hormonal regulation of protein synthesis associated with salt tolerance in plant cells. Proceedings of the National Academy of Science of the USA. (1987 b); 84 739-743
- 76 Singh N. K., Nelson D. E., Kuhn D., Hasegawa P. M., Bressan R. A.. Molecular cloning of osmotin and regulation of its expression by ABA and adaptation to low water potential. Plant Physiol.. (1989); 90 1096-1101
- 77 Skriver K., Mundy J.. Gene expression in response to abscisic acid and osmotic stress. Plant Cell. (1990); 2 503-512
- 78 Suo Y., Leung D. W. M.. Accumulation of extracellular pathogenesis-related proteins in rose leaves following inoculation of in vitro shoots with Diplocarpon rosae. . Scientia Horticulture. (2002 a); 93 167-178
- 79 Suo Y., Leung D. W. M.. BTH-induced accumulation of extracellular proteins and blackspot disease in rose. Biologia Plantarum. (2002 b); 45 273-279
- 80 Takeda S., Sato F., Ida K., Yamada Y.. Nucleotide sequence of a cDNA for osmotin-like protein from cultured tobacco cells. Plant Physiol.. (1991); 97 844-846
- 81 Trudel J., Grenier J., Potvin C., Asselin A.. Several thaumatin-like proteins bind to β-1,3 glucans. Plant Physiol.. (1998); 118 1431-1438
- 82 Van der Wel H., Loeve K.. Isolation and characterization of Thaumatin 1 and 2, the sweet-tasting proteins from Thaumatococcus daniellii Benth. Eur. J. Biochem.. (1972); 31 221-225
- 83 Van Loon L. C., Pierpoint W. S., Boller T., Conejero V.. Recommendations for naming plant pathogenesis-related proteins. Plant Mol. Biol. Reporter. (1994); 12 245-264
- 84 Van Loon L. C., Van Strien E. A.. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Pathol.. (1999); 55 85-97
- 85 Vigers A. J., Roberts W. K., Selitrennikoff C. P.. A new family of plant antifungal proteins. Molecular Plant - Microbe Interactions. (1991); 4 315-323
- 86 Vigers A. J., Wiedemann S., Roberts W. K., Legrand M., Selitrennikoff C. P., Fritig B.. Thaumatin-like pathogenesis-related proteins are antifungal. Plant Science. (1992); 83 155-161
- 87 Vitale A., Raikhel N. V.. What do proteins need to reach different vacuoles?. Trends in Plant Science. (1999); 4 149-155
- 88 Vleeshouwers V. G. A. A., Van Dooijeweert W., Govers F., Kamoun S., Colon L. T.. Does basal PR gene expression in Solanum species contribute to non-specific resistance to Phytophthora infestans? . Physiol. Mol. Plant Pathol.. (2000); 57 35-42
- 89 Vu L., Huynh Q. K.. Isolation and characterization of a 27-kDa antifungal protein from the fruits of Diospyros texana. . Biochem. Biophys. Res. Communications. (1994); 202 666-672
- 90 Wang X., Zafian P., Choudhary M., Lawton M.. The PR5 K receptor protein kinase from Arabidopsis thaliana is structurally related to a family of plant defense proteins. Proceedings of the National Academy of Science of the USA. (1996); 93 2598-2602
- 91 Weete J. D.. Structure and function of sterols in fungi. Advances in Lipid Research. (1989); 23 115-167
-
92 Wilkins M. R., Gasteiger E., Bairoch A., Sanchez J.-C., Williams K. L., Appel R. D., Hochstrasser D. F..
Protein identification and analysis tools in the ExPASy server. Link, A. J., ed. 2-D Proteome Analysis Protocols . New Jersey; Humana Press (1998) - 93 Woloshuk C. P., Meulenhoff J. S., Sela-Buurlage P. M., Van den Elzen P. J. M., Cornelissen B. J. C.. Pathogen-induced proteins with inhibitory activity toward Phytophtora infestans. . Plant Cell. (1991); 3 619-628
- 94 Wu J. L., Khan A. A., Shih C. Y. T., Shih D. S.. Cloning and sequence determination of a gene encoding an osmotin-like protein from strawberry (Fragaria x ananassa duch.) DNA Sequence. (2001); 12 447-453
- 95 Yang Y., Shah J., Klessig D. F.. Signal perception and transduction in plant defense responses. Genes Dev.. (1997); 11 1621-1639
- 96 Ye X. Y., Wang H. X., Ng T. B.. First chromatographic isolation of an antifungal thaumatin-like protein from French bean legumes and demonstration of its antifungal activity. Biochem. Biophys. Res. Communications. (1999); 263 130-134
- 97 Yen H. E., Edwards G. E., Grimes H. D.. Characterization of salt-responsive 24-kilodalton gycoprotein in Mesembryanthemum crystallinum. . Plant Physiol.. (1994); 105 1179-1187
- 98 Yoshioka K., Kachroo P., Tsui F., Sharma S. B., Shah J., Klessig D. F.. Environmentally sensitive, SA-dependent defense responses in the cpr22 mutant of Arabidopsis. . Plant J.. (2001); 26 447-459
- 99 Yun D., Paino D'Urzo M., Abad L., Takeda S., Salzman R., Chen Z., Lee H., Hasegawa P. M., Bressan R. A.. Novel osmotically induced antifungal chitinases and bacterial expression of an active recombinant isoform. Plant Physiol.. (1996); 111 1219-1225
- 100 Yun D.-J., Ibeas J. I., Lee H., Coca M. A., Narasimhan M. L., Uesono Y., Hasegawa P. M., Pardo J. M., Bressan R. A.. Osmotin, a plant antifungal protein, subverts signal transduction to enhance fungal cell susceptibility. Mol. Cell. (1998); 1 807-817
- 101 Yun D.-J., Zhao Y., Pardo J. M., Narasimhan M. L., Damsz B., Lee H., Abad L. R., Paino D'Urzo M., Hasegawa P. M., Bressan R. A.. Stress proteins on the yeast cell surface determine resistance to osmotin, a plant antifungal protein. Proceedings of the National Academy of Science of the USA. (1997); 94 7082-7087
- 102 Zhu B., Chen T. H. H., Li P. H.. Expression of an ABA-responsive osmotin-like gene during induction of freezing tolerance in Solanum commersonii. . Plant Mol. Biol.. (1993); 21 729-735
- 103 Zhu B., Chen T. H. H., Li P. H.. Activation of two osmotin-like protein genes by abiotic stimuli and fungal pathogen in transgenic potato plants. Plant Physiol.. (1995); 108 929-937
M. Dermastia
Department of Biology, Biotechnical Faculty
University of Ljubljana
Večna pot 111
1000 Ljubljana
Slovenia
Email: marina.dermastia@uni-lj.si;
Section Editor: L. A. C. J. Voesenek