Plant Biol (Stuttg) 2003; 5(6): 582-591
DOI: 10.1055/s-2003-44721
Original Paper

Georg Thieme Verlag Stuttgart · New York

N-Glycosylation in the Moss Physcomitrella patens is Organized Similarly to that in Higher Plants

A. Koprivova 1 , F. Altmann 2 , G. Gorr 3 , S. Kopriva 4 , R. Reski 1 , E. L. Decker 1
  • 1University of Freiburg, Plant Biotechnology, 79104 Freiburg, Germany
  • 2Institut für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190 Vienna, Austria
  • 3Greenovation Biotech GmbH, Bötzinger Straße 29 b, 79111 Freiburg, Germany
  • 4University of Freiburg, Department of Tree Physiology, Georges-Köhler-Allee 053, 79085 Freiburg, Germany
Further Information

Publication History

Publication Date:
02 February 2004 (online)

Abstract

Allergenicity of plant glycoproteins in humans may prevent the use of plants as production factories for pharmaceutically important proteins. The major difference between plant and mammalian N-glycans is the presence of xylosyl and α1,3-fucosyl residues in the former. In a first step towards “humanization” of the N-glycosylation pathway in the moss Physcomitrella patens, which could be an excellent system for industrial production of therapeutic proteins, we isolated the cDNAs and genes for N-acetylglucosaminyltransferase I (GNTI), α1,3-fucosyltransferase, and β1,2-xylosyltransferase. Sequence analysis revealed that all three proteins are homologous to their counterparts from higher plants, however, the conservation of the primary structure was only 35 - 45 %. The gene encoding the key enzyme of the pathway, gntI, was disrupted in P. patens by homologous recombination. Although the mutation of this gene in mouse or A. thaliana led to a significantly altered pattern of N-glycans, the glycosylation pattern in the gntI knockouts did not differ from that in wild-type moss and was identical to that in higher plants. Protein secretion, analysed in assays with recombinant human VEGF121 protein, was not affected in the knockouts. We conclude from our findings that the N-glycosylation pathway in P. patens is identically organized to that in higher plants. However, P. patens probably possesses more than one isoform of GNTI which complicates a straightforward knockout. Therefore, and since complex type structures appear more desirable than oligomannosidic N-glycans, future modifications of the pathway should target α1,3-fucosyltransferase and/or β1,2-xylosyltransferase.

References

  • 1 Bakker H., Schijlen E., de Vries T., Schiphorst W. E., Jordi W., Lommen A., Bosch D., van Die I.. Plant members of the alpha 1,3/4-fucosyltransferase gene family encode an alpha 1,4-fucosyltransferase, potentially involved in Lewis (a) biosynthesis, and two core alpha 1,3-fucosyltransferases.  FEBS Letters. (2001);  507 307-312
  • 2 Bardor M., Faveeuw C., Fitchette A. C., Gilbert D., Galas L., Trottein F., Faye L., Lerouge P.. Immunoreactivity in mammals of two typical plant glyco-epitopes, core-α(1,3)-fucose and core xylose.  Glycobiology. (2003);  13 427-434
  • 3 Bierfreund N. M., Reski R., Decker E. L.. Use of an inducible reporter gene system for the analysis of auxin distribution in the moss Physcomitrella patens. .  Plant Cell Reports. (2003);  21 1143-1152
  • 4 Chrispeels M. J., Faye L.. The production of recombinant glycoproteins with defined nonimmunogenic glycans. Owen, M. R. L. and Pen, J., eds. Transgenic Plants: A Production System for Industrial and Pharmaceutical Proteins. Chichester, UK; John Wiley & Sons (1996): 99-113
  • 5 Dirnberger D., Bencur P., Mach L., Steinkellner H.. The Golgi localization of Arabidopsis thaliana β1,2-xylosyltransferase in plant cells is dependent on its cytoplasmic and transmembrane sequences.  Plant Molecular Biology. (2002);  50 273-281
  • 6 Fabini G., Freilinger A., Altmann F., Wilson I. B.. Identification of core alpha1,3-fucosylated glycans and cloning of the requisite fucosyltransferase cDNA from Drosophila melanogaster: Potential basis of the neural anti-horseadish peroxidase epitope.  Journal of Biological Chemistry. (2001);  276 28058-28067
  • 7 Faye L., Gomord V., Fitchette-Laine A. C., Chrispeels M. J.. Affinity purification of antibodies specific for Asn-linked glycans containing α1,3-fucose or β1,2-xylose.  Analytical Biochemistry. (1993);  209 104-108
  • 8 Garcia-Casado G., Sanchez-Monge R., Chrispeels M. J., Armentia A., Salcedo G., Gomez L.. Role of complex asparagine-linked glycans in the allergenicity of plant glycoproteins.  Glycobiology. (1996);  6 471-477
  • 9 Girke T., Schmidt H., Zähringer U., Reski R., Heinz E.. Identification of a novel delta 6-acyl-group desaturase by targeted gene disruption in Physcomitrella patens. .  Plant Journal. (1998);  15 39-48
  • 10 Girod P.-A., Fu H., Zryd J.-P., Vierstra R. D.. Multiubiquitin chain binding subunit MCB1 (RPN10) of the 26S proteasome is essential for developmental progression in Physcomitrella patens. .  The Plant Cell,. (1999);  11 1457-1472
  • 11 Hofmann A. H., Codon A. C., Ivascu C., Russo V. E. A., Knight C., Cove D., Schaefer D. G., Chakhparonian M., Zryd J.-P.. A specific member of the Cab multigene family can be efficiently targeted and disrupted in the moss Physcomitrella patens. .  Molecular and General Genetics. (1999);  261 92-99
  • 12 Hohe A., Decker E. L., Gorr G., Schween G., Reski R.. Tight control of growth and cell differentiation in photoautotrophically growing moss Physcomitrella patens bioreactor cultures.  Plant Cell Reports. (2002);  20 1135-1140
  • 13 Ioffe E., Stanley P.. Mice lacking N-acetylglucosaminyltransferase I activity die at mid-gestation, revealing an essential role for complex or hybrid N-linked carbohydrates.  Proceedings of the National Academy of Science (USA),. (1994);  91 728-732
  • 14 Johnson K. D., Chrispeels M. J.. Substrate specificities of N-acetylglucosaminyl-, fucosyl-, and xylosyltransferases that modify glycoproteins in the Golgi apparatus of bean cotyledons.  Plant Physiology. (1987);  84 1301-1308
  • 15 Imaizumi T., Kadota A., Hasebe M., Wada M.. Cryptochrome light signals control development to suppress auxin sensitivity in the moss Physcomitrella patens. .  The Plant Cell. (2002);  14 373-386
  • 16 Kondo A., Kiso M., Hasegawa A., Kato I.. Separation of pyridylamino oligosaccharides by high-performance liquid chromatography on an amine-bearing silica column.  Analytical Biochemistry. (1994);  219 21-25
  • 17 Koprivova A., Meyer A. J., Schween G., Herschbach C., Reski R., Kopriva S.. Functional knockout of the adenosine 5′-phosphosulfate reductase gene in Physcomitrella patens revives an old route of sulfate assimilation.  The Journal of Biological Chemistry. (2002);  277 32195-32201
  • 18 Leiter H., Mucha J., Staudacher E., Grimm R., Glössl J., Altmann F.. Purification, cDNA cloning, and expression of GDP-L-Fuc: Asn-linked GlcNAc α1,3-fucosyltransferase from mung beans.  Journal of Biological Chemistry. (1999);  274 21830-21839
  • 19 Lerouge P., Fichette-Laine A. C., Chekkafi A., Avidgor V., Faye L.. N-Linked oligosaccharide processing is not necessary for glycoprotein secretion in plants.  Plant Journal. (1996);  10 713-719
  • 20 Lerouge P., Cabanes-Macheteau M., Rayon C., Fichette-Laine A. C., Gomord V., Faye L.. N-Glycoprotein biosynthesis in plants: recent developments and future trends.  Plant Molecular Biology. (1998);  38 31-48
  • 21 Meiri E., Levitan A., Guo F., Christopher D. A., Schaefer D., Zryd J.-P., Danon A.. Characterization of three PDI-like genes in Physcomitrella patens and construction of knock-out mutants.  Molecular and General Genomics. (2002);  267 231-240
  • 22 Moffat A. S.. Exploring transgenic plants as a new vaccine source.  Science,. (1995);  268 658-660
  • 23 Pagny S., Bouissonnie F., Sarkar M., Follet-Gueye M. L., Driouich A., Schachter H., Faye L., Gomord V.. Structural requirements for Arabidopsis β1,2-xylosyltransferase activity and targeting to the Golgi.  The Plant Journal. (2003);  33 189-203
  • 24 Reski R., Abel W.. Induction of budding on chloronemata and caulonemata of the moss, Physcomitrella patens, using isopentenyladenine.  Planta. (1985);  165 354-358
  • 25 Richter U., Kiessling J., Hedtke B., Decker E., Reski R., Börner T., Weihe A.. Two RpoT genes of Physcomitrella patens encode phage-type RNA polymerases with dual targeting to mitochondria and plastids.  Gene. (2002);  290 95-105
  • 26 Rother S., Hadeler B., Orsini J. M., Abel W. O., Reski R.. Fate of a mutant macrochloroplast in somatic hybrids.  Journal of Plant Physiology. (1994);  143 72-77
  • 27 von Schaewen A., Sturm A., O'Neill J., Chrispeels M. J.. Isolation of a mutant Arabidopsis plant that lacks N-acetyl glucosaminyl transferase I and is unable to synthesize Golgi-modified complex N-linked glycans.  Plant Physiology. (1993);  102 1109-1118
  • 28 Schaefer D. G.. A new moss genetics: targeted mutagenesis in Physcomitrella patens. .  Annual Reviews of Plant Biology. (2002);  53 477-501
  • 29 Strasser R., Mucha J., Schwihla H., Altmann F., Glössl J., Steinkellner H.. Molecular cloning and characterization of cDNA coding for β1,2-N-acetylglucosaminyltransferase I (GlcNAc-TI) from Nicotiana tabacum. .  Glycobiology. (1999 a);  9 779-785
  • 30 Strasser R., Steinkellner H., Boren M., Altmann F., Mach L., Glossl J., Mucha J.. Molecular cloning of cDNA encoding N-acetylglucosaminyltransferase II from Arabidopsis thaliana. .  Glycoconjugate Journal. (1999 b);  16 787-791
  • 31 Strasser R.. Characterization of N-acetylglucosaminyltransferase I from tobacco and modulation of the N-glycosylation pathway in plants. Ph.D. Thesis, Zentrum für Angewandte Genetik, Universität für Bodenkultur Wien. (2000)
  • 32 Strasser R., Mucha J., Mach L., Altmann F., Wilson I. B., Glössl J., Steinkellner H.. Molecular cloning and functional expression of β1,2-xylosyltransferase cDNA from Arabidopsis thaliana. .  FEBS Letters. (2000);  472 105-108
  • 33 Strepp R., Scholz S., Kruse S., Speth V., Reski R.. Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin.  Proceedings of the National Academy of Science (USA). (1998);  95 4368-4373
  • 34 Sturm A., Johnson K. D., Szumilo T., Elbein A. D., Chrispeels M. J.. Subcellular localization of glycosidases and glycosyltransferases involved in the processing of the N-linked oligosaccharides.  Plant Physiology. (1987);  85 741-745
  • 35 Tezuka K., Hayashi M., Ishihara H., Akazawa T., Takahashi N.. Studies on synthetic pathway of xylose-containing N-linked oligosaccharides deduced from substrate specificities of the processing enzymes in sycamore cells (Acer pseudoplatanus L.).  European Journal of Biochemistry. (1992);  203 401-413
  • 36 Thompson J. D., Higgins D. G., Gibson T. J.. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.  Nucleic Acid Research. (1994);  22 4673-4680
  • 37 Töpfer R., Matzeit V., Gronenborn B., Schell J., Steinbiss H.-H.. A set of plant expression vectors for transcriptional and translational fusions.  Nucleic Acid Research. (1987);  15 5890
  • 38 Wenderoth I., von Schaewen A.. Isolation and characterization of plant N-acetyl glucosaminyltransferase I (GntI) cDNA sequences. Functional analyses in the Arabidopsis cgl mutant and in antisense plants.  Plant Physiology. (2000);  123 1097-1108
  • 39 Wilson I. B. H., Altmann F.. Concanavalin A binding and endoglycosidase D resistance of β1,2-xylosylated and α1,3-fucosylated plant and insect oligosaccharides.  Glycoconjugate Journal. (1998);  15 203-206
  • 40 Wilson I. B. H., Rendic D., Freilinger A., Dumic J., Altmann F., Mucha J., Müller S., Hauser M. T.. Cloning and expression of cDNAs encoding α1,3-fucosyltransferase homologues from Arabidopsis thaliana. .  Biochimica BioPhysica Acta. (2001 a);  1527 88-96
  • 41 Wilson I. B. H., Zeleny R., Kolarich D., Staudacher E., Stroop C. J., Kamerling J. P., Altmann F.. Analysis of Asn-linked glycans from vegetable foodstuffs: widespread occurrence of Lewis a, core alpha1,3‐linked fucose and xylose substitutions.  Glycobiology. (2001 b);  11 261-274
  • 42 Wilson I. B. H.. Identification of cDNA encoding a plant Lewis type α-fucosyltransferase.  Glycoconjugate Journal. (2002);  18 439-447
  • 43 Zeleny R., Altmann F., Praznik W.. A capillary electrophoresis study on the specifity of β-galactosidases from Aspergillus oryzae, Escherichia coli, Streptococcus pneumoniae and Canavalia ensiformis (jack bean).  Analytical Biochemistry. (1997);  246 96-101
  • 44 Zeng Y., Bannon G., Thomas V. H., Rice K., Drake R., Elbein A.. Purification and specificity of β1, 2-xylosyltransferase, an enzyme that contributes to allergenicity of some plant proteins.  Journal of Biological Chemistry. (1997);  272 31340-31347

E. L. Decker

Plant Biotechnology
University of Freiburg

Schänzlestraße 1

79104 Freiburg

Germany

Email: eva.decker@biologie.uni-freiburg.de

Section Editor: B. Piechulla

    >