Plant Biol (Stuttg) 2003; 5(5): 465-472
DOI: 10.1055/s-2003-44780
Review Article

Georg Thieme Verlag Stuttgart · New York

Between Xylem and Phloem: The Genetic Control of Cambial Activity in Plants

Y. Helariutta 1 , R. Bhalerao 2
  • 1Institute of Biotechnology, University of Helsinki, Helsinki, Finland
  • 2Umeå Plant Science Center, Swedish University of Agricultural Sciences, Department of Forest Genetics and Plant Physiology, Umeå, Sweden
Further Information

Publication History

Publication Date:
27 November 2003 (online)

Abstract

Post-embryonic development is controlled by two types of meristems: apical and lateral. There has been considerable progress recently in understanding the function of root and shoot apical meristems at the molecular level. Knowledge of analogous processes in the lateral, or secondary, meristems, i.e. the vascular cambium or cork cambium, is, however, rudimentary. This is despite the fact that much of the diversity in the plant kingdom is based on the differential functions of these meristems, emphasizing the importance of lateral meristems in the development of different plant forms. The vascular cambium is particularly important for woody plants, but it also plays an important role during the development of various herbaceous species, such as Arabidopsis thaliana. In this review, we focus on the two basic functions of cambial activity: cell proliferation and pattern formation.

References

  • 1 Aloni R.. Differentiation of vascular tissues.  Ann. Rev. Plant Physiol.. (1987);  38 179-204
  • 2 Baima S., Nobili F., Sessa G., Lucchetti S., Ruberti I., Morelli G.. The expression of the Athb-8 homeobox gene is restricted to provascular cells in Arabidopsis thaliana. .  Development. (1995);  121 4171-4182
  • 3 Baima S., Possenti M., Matteucci A., Wisman E., Altamura M. M., Ruberti I., Morelli G.. The arabidopsis ATHB-8 HD-zip protein acts as a differentiation-promoting transcription factor of the vascular meristems.  Plant Physiol.. (2001);  126 643-655
  • 4 Bannan M. W.. The vascular cambium and radial growth in Thuja occidentalis. .  L. Can. J. Bot.. (1955);  33 113-138
  • 5 Baum S. F., Aloni R., Peterson C. A.. Role of cytokinin in vessel regeneration in wounded Coleus internodes.  Ann. Bot.. (1991);  67 543-548
  • 6 Baum S. F., Dubrovsky J. G., Rost T. L.. Apical organization and maturation of the cortex and vascular cylinder in Arabidopsis thaliana (Brassicaceae) roots.  Am. J. Bot.. (2002);  89 908-920
  • 7 Berleth T., Jürgens G.. The role of the monopteros gene in organising the basal body region of the Arabidopsis embryo.  Development. (1993);  118 575-587
  • 8 Carland F. M., Berg B. L., FitzGerald J. N., Jinamornphongs S., Nelson T., Keith B.. Genetic regulation of vascular tissue patterning in Arabidopsis. .  Plant Cell. (1999);  11 2123-2137
  • 9 Catesson A. M.. Cambial cells. Robards, A. W., ed. Dynamic Aspects of Plant Ultrastructure. New York; McGraw Hill (1974): 358-390
  • 10 Dengler N. G.. Regulation of vascular development.  J. Plant Growth Regul.. (2001);  20 1-13
  • 11 Deyholos M. K., Cordner G., Beebe D., Sieburth L. E.. The SCARFACE gene is required for cotyledon and leaf vein patterning.  Development. (2000);  127 3205-3213
  • 12 Dharmawardhana D. P., Ellis B. E., Carlson J. E.. Characterization of vascular lignification in Arabidopsis thaliana. .  Can. J. Bot.. (1992);  70 2238-2244
  • 13 Digby J., Wareing P. F.. The effect of applied growth hormones on cambial division and the differentiation of the cambial derivatives.  Ann. Bot.. (1966);  30 539-549
  • 14 Dolan L., Janmaat K., Willemsen V., Linstead P., Poethig S., Roberts K., Scheres B.. Cellular organisation of the Arabidopsis thaliana root.  Development. (1993);  119 71-84
  • 15 Eriksson M. E., Israelsson M., Olsson O., Moritz T.. Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length.  Nat. Biotechnol.. (2000);  18 784-788
  • 16 Esau K.. Phloem structure in the grapevine and its seasonal changes.  Hilgardia. (1948);  18 217-296
  • 17 Esau K.. Anatomy of Seed Plants. 2nd ed. New York; John Wiley and Sons (1977)
  • 18 Gälweiler L., Guan C., Müller A., Wisman E., Mengden K., Yephremov A., Palme K.. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue.  Science. (1998);  282 2226-2230
  • 19 Hardtke C. S., Berleth T.. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development.  EMBO J.. (1998);  17 1405-1410
  • 20 Hwang I., Sheen J.. Two-component circuitry in Arabidopsis cytokinin signal transduction.  Nature. (2001);  413 383-389
  • 21 Inoue T., Higuchi M., Hashimoto Y., Seki M., Kobayashi M., Kato T., Tabata S., Shinozaki K., Kakimoto T.. Identification of CRE1 as a cytokinin receptor from Arabidopsis. .  Nature. (2001);  409 1060-1063
  • 22 Jun J. H., Ha C. M., Nam H. G.. Involvement of the VEP1 gene in vascular strand development in Arabidopsis thaliana. .  Plant Cell Physiol.. (2002);  43 323-330
  • 23 Kiba T., Yamada H., Mizuno T.. Characterization of the ARR15 and ARR16 response regulators with special reference to the cytokinin signaling pathway mediated by the AHK4 histidine kinase in roots of Arabidopsis thaliana. .  Plant Cell Physiol.. (2002);  43 1059-1066
  • 24 Koizumi K., Sugiyama M., Fukuda H.. A series of novel mutants of Arabidopsis thaliana that are defective in the formation of continuous vascular network: calling the auxin signal flow canalization hypothesis into question.  Development. (2000);  127 3197-3204
  • 25 Kuriyama H., Fukuda H.. Developmental programmed cell death in plants.  Curr. Opin. Plant Biol.. (2002);  5 568-573
  • 26 Lachaud S., Catesson A. M., Bonnemain J. L.. Structure and functions of the vascular cambium.  C. R. Acad. Sci. III. (1999);  322 633-650
  • 27 Larsson P. R.. The vascular cambium development and structure. Berlin; Springer-Verlag (1994)
  • 28 Little C. H. A., Bonga J. M.. Rest in cambium of Abies balsamea. .  Can. J. Bot.. (1974);  52 1723-1730
  • 29 Little C. H. A., Pharis R. P.. Hormonal control of radial and longitudinal growth in the tree stem. Gardner, B. L., ed. Plant Stems: Physiology and Functional Morphology. San Diego, CA; Academic Press (1995): 281-319
  • 30 Little C. H. A., Savidge R. A.. The role of plant growth regulators in forest tree cambial growth.  Plant Growth Regul.. (1987);  6 137-169
  • 31 Mähönen A. P., Bonke M., Kauppinen L., Riikonen M., Benfey P. N., Helariutta Y.. WOODEN LEG is a novel receptor kinase molecule that regulates procambial cell divisions within the root vascular cylinder in Arabidopsis thaliana. .  Genes and Dev.. (2000);  4 2938-2943
  • 32 Mayer U., Büttner G., Jürgens G.. Apical-basal pattern formation in the Arabidopsis embryo: studies on the role of the gnom gene.  Development. (1993);  117 149-162
  • 33 McConnell J. R., Barton M. K.. Leaf polarity and meristem formation in Arabidopsis. .  Development. (1998);  125 2935-2942
  • 34 McConnell J. R., Emery J., Eshed Y., Bao N., Bowman J., Barton M. K.. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots.  Nature. (2001);  411 709-713
  • 35 Moussian B., Schoof H., Haecker A., Jurgens G., Laux T.. Role of the ZWILLE gene in the regulation of central shoot meristem cell fate during Arabidopsis embryogenesis.  EMBO J.. (1998);  17 1799-1809
  • 36 Moyle R., Schrader J., Stenberg A., Olsson O., Saxena S., Sandberg G., Bhalerao R. P.. Environmental and auxin regulation of wood formation involves members of the Aux/IAA gene family in hybrid aspen.  Plant J.. (2002);  31 675-685
  • 37 Nakajima K., Benfey P. N.. Signaling in and out: control of cell division and differentiation in the shoot and root.  Plant Cell. (2002);  14 S265-S276
  • 38 Newman I. V.. Pattern of meristems of vascular plants. 1. Cell partition in the living apices and in the cambial zone in relation to the concepts of initial cells and apical cells.  Phytomorphology. (1956);  6 1-9
  • 39 Okada K., Ueda J., Komaki M. K., Bell J. C., Shimura Y.. Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation.  Plant Cell. (1991);  3 677-684
  • 40 Oyama T., Shimura Y., Okada K.. The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl.  Genes Dev.. (1997);  11 2983-2995
  • 41 Przemeck G. K. H., Mattsson J., Hardtke C. S., Sung Z. R., Berleth T.. Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization.  Planta. (1996);  200 229-237
  • 42 Sabatini S., Beis D., Wolkenfelt H., Murfett J., Guilfoyle T., Malamy J., Benfey P., Leyser O., Bechtold N., Weisbeek P., Scheres B.. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root.  Cell. (1999);  99 463-472
  • 43 Sachs T.. Cell polarity and tissue patterning in plants.  Development. (1991);  S1 83-91
  • 44 Sanio C.. Anatomie der gemainen Kiefer (Pinus sylvestris L.). II. Entwickelungsgeschichte der Holzzellen.  Jahrb. Wiss. Bot.. (1873);  9 50-128
  • 45 Saks Y., Feigenbaum P., Aloni R.. Regulatory effect of cytokinin on secondary xylem fiber formation in an in vivo system.  Plant Physiol.. (1984);  76 638-642
  • 46 Savidge R. A.. The role of plant hormones in higher plant cellular differentiation. II. Experiments with the vascular cambium, and sclereid and tracheid differentiation on the pine, Pinus contorta. .  Histochem. J.. (1983);  15 447-466
  • 47 Savidge R. A., Wareing P. F.. Plant growth regulators and the differentiation of vascular elements. Barnett, J. R., ed. Xylem Cell Development. Tunbridge Wells; Castle House Publications, Ltd. (1981): 192-235
  • 48 Scarpella E., Rueb S., Meijer A. H.. The RADICLELESS1 gene is required for vascular pattern formation in rice.  Development. (2003);  130 645-658
  • 49 Scheres B.. Plant patterning: TRY to inhibit your neighbors.  Curr Biol.. (2002);  12 R804-R806
  • 50 Scheres B., Di Laurenzio L., Willemsen V., Hauser M.-T., Janmaat K., Weisbeek P., Benfey P. N.. Mutations affecting the radial organisation of the Arabidopsis root display specific defects throughout the embryonic axis.  Development. (1995);  121 53-62
  • 51 Schrick K., Mayer U., Horrichs A., Kuhnt C., Bellini C., Dangl J., Schmidt J., Jürgens G.. FACKEL is a sterol C-14 reductase required for organized cell division and expansion in Arabidopsis embryogenesis.  Genes Dev.. (2000);  14 1471-1484
  • 52 Shevell D. E., Leu W. M., Gillmor C. S., Xia G., Feldmann K. A., Chua N. H.. EMB30 is essential for normal cell division, cell expansion, and cell adhesion in Arabidopsis and encodes a protein that has similarity to Sec7.  Cell. (1994);  77 1051-1062
  • 53 Skoog F., Miller C. O.. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. .  Symp. Soc. Exp. Biol.. (1957);  11 118-131
  • 54 Steinmann T., Geldner N., Grebe M., Mangold S., Jackson C. L., Paris S., Galweiler L., Palme K., Jurgens G.. Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF.  Science. (1999);  286 316-318
  • 55 Steeves T. A., Sussex I. M.. Patterns in Plant Development. Cambridge, UK; Cambridge University Press (1989)
  • 56 Sterky F., Regan S., Karlsson J., Hertzberg M., Rohde A., Holmberg A., Amini B., Bhalerao R., Larsson M., Villarroel R., Van Montagu M., Sandberg G., Olsson O., Teeri T. T., Boerjan W., Gustafsson P., Uhlen M., Sundberg B., Lundeberg J.. Gene discovery in the wood-forming tissues of poplar: analysis of 5, 692 expressed sequence tags.  Proc. Natl. Acad. Sci. USA. (1998);  95 13330-13335
  • 57 Suzuki T., Miwa K., Ishikawa K., Yamada H., Aiba H., Mizuno T.. The Arabidopsis sensor His-kinase, AHk4, can respond to cytokinins.  Plant Cell Physiol.. (2001);  42 107-113
  • 58 Torrey J. G., Loomis R. S.. Auxin-cytokinin control of secondary vascular tissue formation in isolated roots of Raphanus. .  Amer. J. Bot.. (1967);  54 1098-1106
  • 59 Ueguchi C., Sato S., Kato T., Tabata S.. The AHK4 gene involved in the cytokinin-signaling pathway as a direct receptor molecule in Arabidopsis thaliana. .  Plant Cell Physiol.. (2001);  42 751-755
  • 60 Uggla C., Mellerowicz E. J., Sundberg B.. Indole-3-acetic acid controls cambial growth in scots pine by positional signaling.  Plant Physiol.. (1998);  117 113-121
  • 61 Uggla C., Moritz T., Sandberg G., Sundberg B.. Auxin as a positional signal in pattern formation in plants.  Proc. Natl. Acad. Sci. USA. (1996);  93 9282-9286
  • 62 van der Graaff E., Dulk-Ras A. D., Hooykaas P. J., Keller B.. Activation tagging of the LEAFY PETIOLE gene affects leaf petiole development in Arabidopsis thaliana. .  Development. (2000);  127 4971-4980
  • 63 van Der Graaff E., Hooykaas P. J., Keller B.. Activation tagging of the two closely linked genes LEP and VAS independently affects vascular cell number.  Plant J.. (2002);  32 819-830
  • 64 Waites R., Hudson A.. phantastica: a gene required for dorsiventrality of leaves in Antirrhinum majus. .  Development. (1995);  121 2143-2154
  • 65 Waites R., Selvadurai H. R., Oliver I. R., Hudson A.. The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. .  Cell. (1998);  93 779-789
  • 66 Xie Q., Guo H. S., Dallman G., Fang S., Weissman A. M., Chua N. H.. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals.  Nature. (2002);  419 167-170
  • 67 Yamada H., Suzuki T., Terada K., Takei K., Ishikawa K., Miwa K., Yamashino T., Mizuno T.. The Arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane.  Plant Cell Physiol.. (2001);  42 1017-1023
  • 68 Ye Z. H.. Vascular tissue differentiation and pattern formation in plants.  Annu. Rev. Plant Biol.. (2002);  53 183-202
  • 69 Zhong R., Taylor J. J., Ye Z. H.. Disruption of interfascicular fiber differentiation in an Arabidopsis mutant.  Plant Cell. (1997);  9 2159-2170
  • 70 Zhong R., Taylor J. J., Ye Z. H.. Transformation of the collateral vascular bundles into amphivasal vascular bundles in an Arabidopsis mutant.  Plant Physiol.. (1999);  120 53-64
  • 71 Zhong R., Ye Z. H.. IFL1, a gene regulating interfascicular fiber differentiation in Arabidopsis, encodes a homeodomain-leucine zipper protein.  Plant Cell. (1999);  11 2139-2152
  • 72 Zhong R., Ye Z. H.. Alteration of auxin polar transport in the Arabidopsis ifl1 mutants.  Plant Physiol.. (2001);  126 549-563

Y. Helariutta

Institute of Biotechnology

P.O. Box 56

FIN-00014 University of Helsinki

Finland

Email: yhelariu@operoni.helsinki.fi

Section Editor: L. A. C. J. Voesenek