Plant Biol (Stuttg) 2003; 5(5): 540-549
DOI: 10.1055/s-2003-44792
Original Paper

Georg Thieme Verlag Stuttgart · New York

Elevated pCO2 Affects C and N Metabolism in Wild Type and Transgenic Tobacco Exhibiting Altered C/N Balance in Metabolite Analysis

J. Kruse 1 , 3 , I. Hetzger 1 , R. Hänsch 2 , R.-R. Mendel 2 , H. Rennenberg 1
  • 1Institut für Forstbotanik und Baumphysiologie, Professur für Baumphysiologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
  • 2Botanisches Institut, TU Braunschweig, Braunschweig, Germany
  • 3Present address: Forest Science Centre, Creswick, Victoria, Australia
Further Information

Publication History

Publication Date:
27 November 2003 (online)

Abstract

Diurnal changes in starch, sugar and amino acid concentrations in source leaves, sink leaves and roots of tobacco plants were determined. In addition to wild type tobacco, transformed plants deficient in root nitrate reductase and exhibiting decreased rates of growth were employed. Further, the growth rates of tobacco plants were modulated by exposure to elevated pCO2. From the diurnal alterations in metabolite concentrations, the daily turnover of starch and amino N was estimated in order to: (i) elucidate whether turnover rates can be related to growth rates, and (ii) identify individual amino compounds with the potential to indicate nitrogen fluxes and the C/N status of plants. Elevated pCO2 increased growth rates and daily turnover of starch in both wild type and transformed plants, indicating enhanced rates of photosynthesis. In wild type plants, elevated pCO2 increased the turnover of amino N, notably glutamine and alanine, in mature source leaves, indicating enhanced nitrate reduction. By contrast, amino N turnover in source leaves of transformed plants was not affected by elevated pCO2, although nitrate reduction was presumably enhanced. Apparently, export of amino N was increased from the source leaves of transformed plants. This assumption was supported by a significantly increased turnover of amino N in young sink leaves compared to mature source leaves, indicating a preference for acropetal amino N allocation and import into the young leaves of the transformed plants. Further, elevated pCO2 increased the allocation of leaf-derived amino N to the roots of transformed plants. This led to increased levels of amino compounds during the entire day, notably glutamate, but did not affect root growth of the transformed plants. The suitability of individual amino compounds as markers for major N fluxes, such as nitrate reduction, photorespiration, and amino N export and import is discussed.

References

  • 1 Arp W.-J.. Effects of source-sink relations on photosynthetic acclimation to elevated carbon dioxide.  Plant, Cell and Environment. (1991);  14 869-876
  • 2 Barneix A. T., Causin H. F.. The central role of amino acids on nitrogen utilization and plant growth.  Journal of Plant Physiology. (1996);  149 358-362
  • 3 Bourguignon J., Rebeille F., Douce R.. Serine and glycine metabolism in higher plants. Singh, B. K., ed. Plant Amino Acids. Princeton, New Jersey; American Cyanamid Company (1999)
  • 4 Bush D. R.. Amino acid transport. Singh, B. K., ed. Plant Amino Acids. Princeton, New Jersey; American Cyanamid Company (1999)
  • 5 Caputo C., Barneix A. J.. Export of amino acids to the phloem in relation to N supply in wheat.  Physiologia Plantarum. (1997);  101 853-860
  • 6 Cheng C.-L., Acedo G. N., Cristinsin M., Conkling M. A.. Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription.  Proceedings of the National Academy of Sciences USA. (1992);  89 1861-1864
  • 7 Coleman J. S., McConnaughay K. D. M., Bazzas F. A.. Elevated carbon dioxide and plant nitrogen use. Is reduced tissue nitrogen concentration size dependent?.  Oecologia. (1993);  95 195-200
  • 8 Deng M.-D., Mourreaux T., Cherel I., Boutin J.-P., Caboche M.. Effects of nitrogen metabolites on the regulation and circadian expression of tobacco nitrate reductase.  Plant Physiology Biochemistry. (1991);  29 (3) 239-247
  • 9 Drake B. G., Gonzales-Meler M. A., Long S. P.. More efficient plants: a consequence of rising atmospheric CO2?.  Annual Review of Plant Physiology and Plant Molecular Biology. (1997);  48 609-639
  • 10 Ferrario-Mery S., Thibaud M.-C., Betsche T., Valadier M.-H., Foyer C. H.. Modulation of carbon and nitrogen metabolism, and of nitrate reductase, in untransformed and transformed Nicotiana plumbaginifolia during CO2 enrichment of plants grown in pots and in hydroponic culture.  Planta. (1997);  202 510-521
  • 11 Ferrario-Mery S., Maslaux C., Suzuki A., Valadier M. H., Hirel B., Foyer C. H.. Glutamine and α-ketoglutarate are metabolic signals involved in nitrate reductase gene transcription in untransformed and transformed tobacco plants deficient in ferredoxin-glutamine-α-ketoglutarate aminotransferase.  Planta. (2001);  213 265-271
  • 12 Foyer C. H., Parry M., Noctor G.. Markers and signals associated with nitrogen assimilation in higher plants.  Journal of Experimental Botany. (2003);  382 585-593
  • 13 Geiger M., Walch-Liu P., Engels C., Harnecker J., Schulze E.-D., Ludewig F., Sonnewald U., Scheible W.-R., Stitt M.. Enhanced carbon dioxide leads to a modified diurnal rhythm of nitrate reductase activity in older plants and higher levels of amino acids in young tobacco plants.  Plant, Cell and Environment. (1998);  21 253-268
  • 14 Grimmer C., Komor E.. Assimilate export by leaves of Ricinus communis L. growing under normal and elevated carbon dioxide concentrations: the same rate during the day, a different rate at night.  Planta. (1999);  209 275-281
  • 15 Hänsch R., Fessel D. G., Hoffmann C., Hesberg C., Hoffmann G., Walch-Liu P., Engels C., Kruse J., Rennenberg H., Kaiser W. M., Mendel R.-R.. Tobacco plants that lack expression of a functional nitrate reductase in the roots show changes in growth rates and metabolite accumulation.  Journal of Experimental Botany. (2001);  52 1251-1258
  • 16 Herold A.. Regulation of photosynthesis by sink activity. The missing link.  The New Phytologist. (1980);  86 131-144
  • 17 Kaiser W. M.. Regulatory interaction of carbon and nitrogen metabolism.  Progress in Botany. (1997);  58 150-163
  • 18 Kruse J., Hetzger I., Hänsch R., Mendel R.-R., Walch-Liu P., Engels C., Rennenberg H.. Elevated pCO2 favours nitrate reduction in roots of wild type tobacco (Nicotiana tabacum cv. Gat.) and significantly alters N-uptake, -transport and -allocation in transformed tobacco lacking functional nitrate reductase in the roots.  Journal of Experimental Botany. (2002);  379 2351-2367
  • 19 Kruse J., Hetzger I., Mai C., Polle A., Rennenberg H.. Elevated pCO2 affects N-metabolism of young poplar plants (Populus tremula × P. alba) differently at deficient and sufficient N-supply.  The New Phytologist. (2003);  157 65-81
  • 20 Lea J. L., Ireland R. J.. Nitrogen metabolism in higher plants. Singh, B. K., ed. Plant Amino Acids. Princeton, New Jersey; American Cyanamid Company (1999)
  • 21 Ludewig F., Sonnewald U., Kauder F., Heineke D., Geiger M., Stitt M., Müller-Röber B. T., Gillissen B., Kühn C., Frommer W. B.. The role of transient starch in acclimation to elevated atmospheric CO2.  FEBS Letters. (1998);  429 147-151
  • 22 Matt P., Geiger M., Walch-Liu P., Engels C., Krapp A., Stitt M.. The immediate cause of the diurnal changes of nitrogen metabolism in leaves of nitrate replete tobacco: a major imbalance between the rate of nitrate reduction and the rates of nitrate uptake and ammonium metabolism during the first part of the light period.  Plant, Cell and Environment. (2001 a);  24 177-190
  • 23 Matt P., Geiger M., Walch-Liu P., Engels C., Krapp A., Stitt M.. Elevated carbon dioxide increases nitrate uptake and nitrate reductase activity when tobacco is growing on nitrate, but increases ammonium uptake and inhibits nitrate reductase activity when tobacco is growing on ammonium nitrate.  Plant, Cell and Environment. (2001 b);  24 1119-1137
  • 24 Miller A., Tsai C.-H., Hemphill D., Endres M., Rodermel S., Spalding M.. Elevated CO2 during leaf ontogeny. A new perspective on acclimation.  Plant Physiology. (1997);  115 1195-1200
  • 25 Novitskaya L., Trevanion S. L., Driscoll S., Foyer C. H., Noctor G.. How does photorespiration modulate leaf amino acid contents? A dual approach through modeling and metabolite analysis.  Plant, Cell and Environment. (2002);  25 821-835
  • 26 Paul M. J., Pellny T. K.. Carbon metabolite feedback regulation of leaf photosynthesis and development.  Journal of Experimental Botany. (2003);  382 539-547
  • 27 Paul M. J., Foyer C. H.. Sink regulation of photosynthesis.  Journal of Experimental Botany. (2001);  360 1383-1400
  • 28 Poorter H., van Berkel Y., Baxter R., den Hertog J., Dijkstra P., Gifford R. M., Griffin K. L., Roumet C., Roy J., Wong S. C.. The effect of elevated CO2 on the chemical composition and construction costs of leaves of 27 C3 species.  Plant, Cell and Environment. (1997);  20 472-482
  • 29 Stitt M.. Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells.  Plant, Cell and Environment. (1991);  14 741-763
  • 30 Stitt M., Krapp A.. The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background.  Plant, Cell and Environment. (1999);  22 583-621
  • 31 Stitt M., Müller C., Matt P., Gibon Y., Carillo P., Morcuende R., Scheible W.-R., Krapp A.. Steps towards an integrated view of nitrogen metabolism.  Journal of Experimental Botany. (2002);  53 959-970
  • 32 Thomas R. B., Strain B. R.. Root restriction as a factor in photosynthetic acclimation of cotton seedlings grown in elevated carbon dioxide.  Plant Physiology. (1991);  96 627-634
  • 33 Vincentz M., Moureaux T., Leydecker M.-T., Vaucheret H., Caboche M.. Regulation of nitrate and nitrite reductase expression in Nicotiana plumbaginifolia leaves by nitrogen and carbon metabolites.  The Plant Journal. (1993);  3 315-324
  • 34 Winter H., Lohaus G., Heldt H.-W.. Phloem transport of amino acids in relation to their cytosolic levels in barley leaves.  Plant Physiology. (1992);  99 996-1004

H. Rennenberg

Institut für Forstbotanik und Baumphysiologie
Professur für Baumphysiologie
Universität Freiburg

Georges-Köhler-Allee, Geb. 053/054

79085 Freiburg

Germany

Email: heinz.rennenberg@ctp.uni-freiburg.de

Section Editor: M. Riederer