Subscribe to RSS
DOI: 10.1055/s-2003-44794
Georg Thieme Verlag Stuttgart · New York
Influence of Compatibility System and Life Form on Plant Reproductive Success
Publication History
Publication Date:
27 November 2003 (online)
Abstract
We studied the compatibility system and the autonomous selfing capacity of 32 native species from the Chaco Serrano forests (central Argentina), and compared fruit set, considering plant life form and compatibility status to evaluate: (i) the extent of the association between life form and compatibility system, (ii) the influence of the life form and/or of the compatibility system on natural fruit set, and (iii) the preemergent reproductive advantages provided by self-compatibility and autonomous self-pollination. Ca. 60 % of the species were self-compatible (SC). Natural fruit set of SC species triplicate those of self-incompatible (SI) species. Almost all SC species have autonomous selfing capacity. Nevertheless, on average, SC species produce more than twice as many fruits through natural pollination in comparison to autonomous selfing, and fruit set obtained after autonomous selfing was significantly lower than hand-selfed fruit set. Most SC species received insufficient pollen from themselves via autonomous selfing, and natural fruit set was mostly pollinator-mediated. Thus, the reproductive assurance provided by autonomous selfing is relatively low in comparison with that provided by pollinators. We supplemented our data with published results from different sites in South America, to assess how general are the associations between life form and compatibility system and between natural fruit production and the self compatibility index. There is a differential distribution of SC and SI species according to life form, with a skew towards incompatibility among woody plants and towards compatibility in herbs. On the other hand, regression analysis showed there is a general positive trend between natural fruit set and the self compatibility index of the species.
Key words
Autonomous selfing - reproductive assurance - pollen limitation - genetic load hypothesis - Chaco Serrano forest.
References
- 1 Aizen M. A., Feinsinger P.. Forest fragmentation, pollination, and plant reproduction in a Chaco dry forest, Argentina. Ecology. (1994); 75 330-351
- 2 Amela García T., Hoc P. S.. Floral biology and reproductive system of Passiflora caerulea. . Beiträge zur Biologie der Pflanzen. (1997); 70 1-20
-
3 Arroyo M. T. K., Squeo F..
Relationship between plant breeding systems and pollination. Kawano, S., ed. Biological Approaches and Evolutionary Trends in Plants. London; Academic Press Limited (1990): 205-227 - 4 Arroyo M. T. K., Uslar P.. Breeding systems in a temperate Mediterranean-type climate montane sclerophyllous forest in central Chile. Botanical Journal of the Linnean Society. (1993); 111 83-102
- 5 Barrett S. C. H., Helenurm K.. The reproductive biology of boreal forest herbs. I. Breeding systems and pollination. Canadian Journal of Botany. (1987); 65 2036-2046
-
6 Barrett S. C. H., Eckert C. G..
Variation and evolution of mating systems in seed plants. Kawano, S., ed. Biological Approaches and Evolutionary Trends in Plants. London; Academic Press Limited (1990): 229-254 -
7 Barrett S. C. H., Harder L. D., Worley C..
The comparative biology of pollination and mating in flowering plants. Silvertown, J., Franco, M., and Harper, J. L., eds. Plant Life Histories. Ecology, Phylogeny and Evolution. Cambridge; Cambridge University Press (1997): 57-76 - 8 Bawa K. S.. Breeding systems of tree species of a lowland tropical community. Evolution. (1974); 28 85-92
- 9 Bond W. J.. Do mutualisms matter? Assessing the impact of pollinator and disperser disruption on plant extinction. Proceedings of the Royal Society of London, Series Botanica. (1994); 344 83-90
- 10 Buchmann S. L., Nabhan G. P.. The Forgotten Pollinators. Washington; Island Press (1996)
- 11 Burd M.. Bateman's principle and plant reproduction: the role of pollen limitation in fruit and seed set. Botanical Review. (1994); 60 83-139
- 12 Cabrera A. L.. Regiones Fitogeográficas Argentinas. Buenos Aires; Ed. Acme (1976)
- 13 Dafni A.. Pollination Ecology - A Practical Approach. New York; IRL - Oxford University Press (1992)
- 14 Fausto J. A., Eckhart V. M., Geber M. A.. Reproductive assurance and the evolutionary ecology of self-pollination in Clarkia xantiana (Onagraceae). American Journal of Botany. (2001); 88 1794-1800
- 15 Feinsinger P., Tiebout H. M., Young B. E.. Do tropical bird-pollinated plants exhibit density-dependent interactions? Field experiments. Ecology. (1991); 72 1953-1963
- 16 Gibbs P.. Self-incompatibility in flowering plants: a neotropical perspective. Revista Brasileira de Botanica. (1990); 13 125-136
- 17 Gibbs P. E., Bianchi M. B.. Does late-acting self-incompatibility (LSI) show family clustering? Two more species of Bignoniaceae with LSI: Dolichandra cynanchoides and Tabebuia nodosa. . Annals of Botany. (1999); 84 449-457
-
18 Hamrick J. L., Godt M. J. W..
Effects of life history traits on genetic diversity in plant species. Silvertown, J., Franco, M., and Harper, J. L., eds. Plant Life Histories. Ecology, Phylogeny and Evolution. Cambridge; Cambridge University Press (1997): 102-120 - 19 Herrera C. M., Sánchez-Lafuente A. M., Medrano M., Guitian J., Cerda X., Rey P.. Geographical variation in autonomous self-pollination levels unrelated to pollinator service in Helleborus foetidus (Ranunculaceae). American Journal of Botany. (2001); 88 1025-1032
- 20 Johnson S. D., Steiner K. E.. Generalization versus specialization in plant pollination systems. Trends in Ecology and Evolution. (2000); 15 140-143
- 21 Kearns C. A., Inouye D. W.. Pollinators, flowering plants, and conservation biology. BioScience. (1997); 47 297-307
-
22 Kevan P. G., Baker H. G..
Insects on flowers. Huffaker, C. B. and. Elias, A. P., eds. Ecological Entomology. New York; John Wiley and Sons (1999): 553-584 -
23 Klekowski E. J..
Mechanisms that maintain the genetic integrity of plants. Greuter, W. and Zimmer, B., eds. Proceedings of the XIV International Botanical Congress. Königstein/Taunus; Koeltz (1988 a): 137-152 - 24 Klekowski E. J.. Genetic load and its causes in long-lived plants. Trees. (1988 b); 2 195-203
- 25 Kron P., Stewart S. C., Back A.. Self-compatibility, autonomous self-pollination, and insect-mediated pollination in the clonal species Iris versicolor. . Canadian Journal of Botany. (1993); 71 1503-1509
- 26 Lloyd D. G.. Self- and cross-fertilization in plants. II The selection of self-fertilization. International Journal of Plant Sciences. (1992); 153 370-380
- 27 Lloyd D. G., Schoen D. J.. Self-and cross-fertilization in plants. I Functional dimensions. International Journal of Plant Sciences. (1992); 153 358-369
- 28 Riveros M., Humaña A. M., Arroyo M. T. K.. Sistemas reproductivos en especies del bosque valdiviano. Phyton. (1996); 58 167-176
- 29 Ruiz T. Z., Arroyo M. T. K.. Plant reproductive ecology of a secondary deciduous forest in Venezuela. Biotropica. (1978); 19 221-230
- 30 Schenone M. A.. Estudio de las Interacciones Planta-Polinizador en una Comunidad del Bosque Serrano (Chaco Serrano). Undergraduate thesis, Universidad Nacional de Córdoba. (1999)
-
31 Schoen D. J., Morgan M. T., Bataillon T..
How does self-pollination evolve? Inferences from ecology and molecular genetic variation. Silvertown, J., Franco, M., and Harper, J. L., eds. Plant Life Histories. Ecology, Phylogeny and Evolution. Cambridge; Cambridge University Press (1997): 77-101 - 32 Sobrevila C., Arroyo M. T. K.. Breeding systems in a montane tropical cloud forest in Venezuela. Plant Systematics and Evolution. (1982); 140 19-37
- 33 Sokal R. R., Rohlf F. J.. Biometry. San Francisco, California; W. H. Freeman (1995)
- 34 SPSS, Inc. .SPSS for Windows: Base System User's Guide, Release 10.0. Chicago; SPSS Inc (1999)
- 35 Waser N. M., Chittka L., Price M. V., Williams N. M., Ollerton J.. Generalization in pollination systems, and why it matters. Ecology. (1996); 77 1043-1060
- 36 Wiens D., Calvin C. L., Wilson C. A., Davern C. I., Frank D., Seavey S. R.. Reproductive success, spontaneous embryo abortion, and genetic load in flowering plants. Oecologia. (1987); 71 501-509
- 37 Zink R. A., Wheelwright N. T.. Facultative self-pollination in island irises. American Midland Naturalist. (1997); 137 72-78
L. Galetto
Instituto Multidisciplinario de Biología Vegetal
Universidad Nacional de Córdoba - CONICET
C.C. 495
5000, Córdoba
Argentina
Email: leo@imbiv.unc.edu.ar
Section Editor: M. C. Ball