Aktuelle Neurologie 2004; 31(3): 113-121
DOI: 10.1055/s-2003-812643
Übersicht
© Georg Thieme Verlag Stuttgart · New York

Therapierelevante Pathophysiologie des akuten ischämischen Schlaganfalls: Was ist gesichert?

The Pathophysiological Basis of Stroke Therapy: A Critical Review of the Experimental and Clinical EvidenceH.  Harms1 , K.  Prass1 , U.  Dirnagl1 , A.  Meisel1
  • 1Abt. für Experimentelle Neurologie, Charité Universitätsmedizin Berlin
Further Information

Publication History

Publication Date:
06 April 2004 (online)

Zusammenfassung

Die einzige zugelassene, kausal wirksame Therapie des akuten Schlaganfalls, die rekanalisierende Therapie mittels rtPA, kann derzeit in allenfalls 1 - 2 % aller betroffenen Menschen durchgeführt werden. Für die große Mehrzahl der Patienten bleibt die allgemeine medizinische Behandlung oder auch Basistherapie. Wir wollen anhand tierexperimenteller Untersuchungen vier Aspekte der Basistherapie nach akutem Schlaganfall näher beleuchten. Es handelt sich hierbei um die Behandlung des systemischen Blutdrucks, des Blutzuckers, der Körpertemperatur und von Infektionen. Unter Berücksichtigung vorliegender klinischer Studien bzw. gegenwärtiger Behandlungskonzepte verweisen wir auf die klinische Relevanz tierexperimenteller Ergebnisse und auf mögliche neue therapeutische Optionen. Trotz teilweise noch umstrittener pathophysiologischer Vorstellungen haben letztlich vor allem tierexperimentelle Untersuchungen zur Formulierung der gegenwärtigen Behandlungskonzepte geführt. Klinische Therapiestudien, die diese Konzepte solide stützen, fehlen derzeit. Ungeachtet dessen scheint die konsequente Umsetzung dieser Konzepte auf den spezialisierten Schlaganfallstationen (Stroke Units) zur verbesserten Versorgung der Schlaganfallpatienten beizutragen, wenn auch die Erfolge noch bescheiden bleiben.

Abstract

At present, thrombolytic therapy with rtPA is the only approved pharmacological strategy for the treatment of acute ischemic stroke with demonstrated efficacy. However, due to the narrow time window, only 1 - 2 % of stroke patients do benefit from thrombolysis. For the remaining patients, general measures remain the only option. We review the experimental and clinical evidence for the efficacy of targeting four physiologic variables in the therapy of acute stroke: systemic blood pressure, blood glucose, body temperature, and infections. It will become apparent that while most general measures of stroke are plausible, experimental evidence for their efficacy is not always unequivocal, and clinical evidence in most instances is lacking. As a consequence, additional evidence from controlled clinical studies in acute stroke patients is necessary to provide a solid basis for the manipulation of blood pressure, blood glucose, and body temperature, as well as for the prevention of infections. Since there is little or no incentive for pharmaceutical companies to sponsor such trials, novel funding concepts are desperately needed.

Literatur

  • 1 The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group . Tissue plasminogen activator for acute ischemic stroke.  N Engl J Med. 1995;  333 1581-1587
  • 2 Lapchak P A. Development of thrombolytic therapy for stroke: a perspective.  Expert Opin Investig Drugs. 2002;  11 1623-1632
  • 3 Dirnagl U, Iadecola C, Moskowitz M A. Pathobiology of ischaemic stroke: an integrated view.  Trends Neurosci. 1999;  22 391-397
  • 4 Gladstone D J, Black S E, Hakim A M. Heart and Stroke Foundation of Ontario Centre of Excellence in Stroke Recovery. Toward wisdom from failure: lessons from neuroprotective stroke trials and new therapeutic directions.  Stroke. 2002;  33 2123-2136
  • 5 Weih M, Prass K, Ruscher K. et al . Ischemia tolerance; model for research, hope for clinical practice?.  Nervenarzt. 2001;  72 255-260
  • 6 Dirnagl U, Simon R P, Hallenbeck J M. Ischemic tolerance and endogenous neuroprotection.  Trends Neurosci. 2003;  26 248-254
  • 7 Sakanaka M, Wen T C, Matsuda S. et al . In vivo evidence that erythropoietin protects neurons from ischemic damage.  Proc Natl Acad Sci U S A. 1998;  95 4635-4640
  • 8 Ruscher K, Freyer D, Karsch M. et al . Erythropoietin is a paracrine mediator of ischemic tolerance in the brain: evidence from an in vitro model.  J Neurosci. 2002;  22 10291-10301
  • 9 Prass K, Scharff A, Ruscher K. et al . Hypoxia-induced stroke tolerance in the mouse is mediated by erythropoietin.  Stroke. 2003;  34 1981-1986
  • 10 Prass K, Ruscher K, Karsch M. et al . Desferrioxamine induces delayed tolerance against cerebral ischemia in vivo and in vitro.  J Cereb Blood Flow Metab. 2002;  22 520-525
  • 11 Siren A L, Fratelli M, Brines M. et al . Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress.  Proc Natl Acad Sci U S A. 2001;  98 4044-4049
  • 12 Brines M L, Ghezzi P, Keenan S. et al . Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury.  Proc Natl Acad Sci U S A. 2000;  97 10526-10531
  • 13 Bernaudin M, Marti H H, Roussel S. et al . A potential role for erythropoietin in focal permanent cerebral ischemia in mice.  J Cereb Blood Flow Metab. 1999;  19 643-651
  • 14 Ehrenreich H, Hasselblatt M, Dembowski C. et al . Erythropoietin therapy for acute stroke is both safe and beneficial.  Mol Med. 2002;  8 495-505
  • 15 Wiessner C, Allegrini P R, Ekatodramis D. et al . Increased cerebral infarct volumes in polyglobulic mice overexpressing erythropoietin.  J Cereb Blood Flow Metab. 2001;  21 857-864
  • 16 European Stroke Initiative (EUSI) . European Stroke Initiative Recommendations for Stroke Management - Update 2003.  Cerebrovasc Dis. 2003;  16 311-337
  • 17 Wallace J D, Levy L L. Blood pressure after stroke.  JAMA. 1981;  246 2177-2180
  • 18 Britton M, Carlsson A, Faire U de. Blood pressure course in patients with acute stroke and matched controls.  Stroke. 1986;  17 861-864
  • 19 Meyer S, Fiischer C, Treib J. et al . Autonomic and Cardiovascular Dysfunction in Acute Cerebral Ischemia.  Akt Neurol. 2001;  28 170-175
  • 20 Dirnagl U, Pulsinelli W. Autoregulation of cerebral blood flow in experimental focal brain ischemia.  J Cereb Blood Flow Metab. 1990;  10 327-336
  • 21 Cole D J, Drummond J C, Shapiro H M, Zornow M H. Influence of hypotension and hypotensive technique on the area of profound reduction in cerebral blood flow during focal cerebral ischaemia in the rat.  Br J Anaesth. 1990;  64 498-502
  • 22 Zhu C Z, Auer R N. Graded hypotension and MCA occlusion duration: effect in transient focal ischemia.  J Cereb Blood Flow Metab. 1995;  15 980-988
  • 23 Harms H, Wiegand F, Megow D. et al . Acute treatment of hypertension increases infarct sizes in spontaneously hypertensive rats.  Neuroreport. 2000;  11 355-359
  • 24 Leonardi-Bee J, Bath P M, Phillips S J, Sandercock P A,. IST Collaborative Group . Blood pressure and clinical outcomes in the International Stroke Trial.  Stroke. 2002;  33 1315-1320
  • 25 Ahmed N, Wahlgren G. High initial blood pressure after acute stroke is associated with poor functional outcome.  J Intern Med. 2001;  249 467-473
  • 26 Schrader J, Luders S, Kulschewski A. et al . Acute Candesartan Cilexetil Therapy in Stroke Survivors Study Group. The ACCESS Study: evaluation of Acute Candesartan Cilexetil Therapy in Stroke Survivors.  Stroke. 2003;  34 1699-1703
  • 27 Donnan G A, Davis S M, Thrift A. The role of blood pressure lowering before and after stroke.  Curr Opin Neurol. 2003;  16 81-86
  • 28 Dyker A G, Grosset D G, Lees K. Perindopril reduces blood pressure but not cerebral blood flow in patients with recent cerebral ischemic stroke.  Stroke. 1997;  28 580-583
  • 29 Lisk D R, Grotta J C, Lamki L M. et al . Should hypertension be treated after acute stroke? A randomized controlled trial using single photon emission computed tomography.  Arch Neurol. 1993;  50 855-862
  • 30 Bath P, Chalmers J, Powers W. et al . International Society of Hypertension Writing Group. International Society of Hypertension (ISH): statement on the management of blood pressure in acute stroke.  J Hypertens. 2003;  21 665-672
  • 31 Drummond J C, Oh Y S, Cole D J, Shapiro H M. Phenylephrine-induced hypertension reduces ischemia following middle cerebral artery occlusion in rats.  Stroke. 1989;  20 1538-1544
  • 32 Smrcka M, Ogilvy C S, Crow R J. et al . Induced hypertension improves regional blood flow and protects against infarction during focal ischemia: time course of changes in blood flow measured by laser Doppler imaging.  Neurosurgery. 1998;  42 617-624
  • 33 Chileuitt L, Leber K, McCalden T, Weinstein P R. Induced hypertension during ischemia reduces infarct area after temporary middle cerebral artery occlusion in rats.  Surg Neurol. 1996;  46 229-234
  • 34 Hillis A E, Ulatowski J A, Barker P B. et al . A pilot randomized trial of induced blood pressure elevation: effects on function and focal perfusion in acute and subacute stroke.  Cerebrovasc Dis. 2003;  16 236-246
  • 35 Blood pressure in Acute Stroke Collaboration (BASC) Interventions for deliberately altering blood pressure in acute stroke (Cochrane Review). In: The Cochrane Library, Issue 3. Oxford; 2003, Update Software
  • 36 Reith J, Jorgensen H S, Pedersen P M. et al . Body temperature in acute stroke: relation to stroke severity, infarct size, mortality, and outcome.  Lancet. 1996;  347 422-425
  • 37 Castillo J, Davalos A, Marrugat J, Noya M. Timing for fever-related brain damage in acute ischemic stroke.  Stroke. 1998;  29 2455-2460
  • 38 Johnston K C, Li J Y, Lyden P D. et al . Medical and neurological complications of ischemic stroke: experience from the RANTTAS trial.  Stroke. 1998;  29 447-453
  • 39 Georgilis K, Plomaritoglou A, Dafni U. et al . Aetiology of fever in patients with acute stroke.  Journal of Internal Medicine. 1999;  246 203 -209
  • 40 Boysen G, Christensen H. Stroke severity determines body temperature in acute stroke.  Stroke. 2001;  32 413-417
  • 41 Takagi K, Ginsberg M D, Globus M Y. et al . Effect of hyperthermia on glutamate release in ischemic penumbra after middle cerebral artery occlusion in rats.  Am J Physiol. 1994;  267 1770-1776
  • 42 Wass C T, Lanier W L, Hofer R E. et al . Temperature changes of > or = 1 degree C alter functional neurologic outcome and histopathology in a canine model of complete cerebral ischemia.  Anesthesiology. 1995;  83 325-335
  • 43 Kim Y, Busto R, Dietrich W D. et al . Delayed postischemic hyperthermia in awake rats worsens the histopathological outcome of transient focal cerebral ischemia.  Stroke. 1996;  27 2274-2280
  • 44 Baena R C, Busto R, Dietrich W D. et al . Hyperthermia delayed by 24 hours aggravates neuronal damage in rat hippocampus following global ischemia.  Neurology. 1997;  48 768-773
  • 45 Azzimondi G, Bassein L, Nonino F. et al . Fever in acute stroke worsens prognosis. A prospective study.  Stroke. 1995;  26 2040-2043
  • 46 Kammersgaard L P, Jorgensen H S, Rungby J A. et al . Admission body temperature predicts long-term mortality after acute stroke: the Copenhagen Stroke Study.  Stroke. 2002;  33 1759-1762
  • 47 Hajat C, Hajat S, Sharma P. Effects of poststroke pyrexia on stroke outcome: a meta-analysis of studies in patients.  Stroke. 2000;  31 410-414
  • 48 Kasner S E, Wein T, Piriyawat P. et al . Acetaminophen for altering body temperature in acute stroke: a randomized clinical trial.  Stroke. 2002;  33 130-134
  • 49 Dippel D W, Breda E J van, Gemert H M van. et al . Effect of paracetamol (acetaminophen) on body temperature in acute ischemic stroke: a double-blind, randomized phase II clinical trial.  Stroke. 2001;  32 1607-1612
  • 50 Dippel D W, Breda E J Van, Worp H B Van Der. et al . Effect of paracetamol (acetaminophen) and ibuprofen on body temperature in acute ischemic stroke PISA, a phase II double-blind, randomized, placebo-controlled trial.  BMC Cardiovasc Disord. 2003;  3 2
  • 51 Koennecke H C, Leistner S. Prophylactic antipyretic treatment with acetaminophen in acute ischemic stroke: a pilot study.  Neurology. 2001;  57 2301-2303
  • 52 Rosomoff H L, Holaday D A. Cerebral blood flow and cerebral oxygen consumption during hypothermia.  Am J Physiol. 1954;  179 85-88
  • 53 Busto R, Globus M Y, Dietrich W D. et al . Effect of mild hypothermia on ischemia-induced release of neurotransmitters and free fatty acids in rat brain.  Stroke. 1989;  20 904-910
  • 54 Onesti S T, Baker C J, Sun P P, Solomon R A. Transient hypothermia reduces focal ischemic brain injury in the rat.  Neurosurgery. 1991;  29 369-373
  • 55 Morikawa E, Ginsberg M D, Dietrich W D. et al . The significance of brain temperature in focal cerebral ischemia: histopathological consequences of middle cerebral artery occlusion in the rat.  J Cereb Blood Flow Metab. 1992;  12 380-389
  • 56 Barone F C, Feuerstein G Z, White R F. Brain cooling during transient focal ischemia provides complete neuroprotection.  Neurosci Biobehav Rev. 1997;  21 31-44
  • 57 Green E J, Dietrich W D, Dijk F van. et al . Protective effects of brain hypothermia on behavior and histopathology following global cerebral ischemia in rats.  Brain Res. 1992;  580 197-204
  • 58 Kwon J Y, Bacher A, Deyo D J. et al . Effects of hypothermia and lamotrigine on trace-conditioned learning after global cerebral ischemia in rabbits.  Exp Neurol. 1999;  159 105-113
  • 59 Colbourne F, Corbett D, Zhao Z. et al . Prolonged but delayed postischemic hypothermia: a long-term outcome study in the rat middle cerebral artery occlusion model.  J Cereb Blood Flow Metab. 2000;  20 1702-1708
  • 60 Olsen T S, Weber U J, Kammersgaard L P. Therapeutic hypothermia for acute stroke.  Lancet Neurol. 2003;  2 410-416
  • 61 Kollmar R, Schabitz W R, Heiland S. et al . Neuroprotective effect of delayed moderate hypothermia after focal cerebral ischemia: an MRI study.  Stroke. 2002;  33 1899-1904
  • 62 Maier C M, Sun G H, Kunis D. et al . Delayed induction and long-term effects of mild hypothermia in a focal model of transient cerebral ischemia: neurological outcome and infarct size.  J Neurosurg. 2001;  94 90-96
  • 63 Miyazawa T, Tamura A, Fukui S, Hossmann K A. Effect of mild hypothermia on focal cerebral ischemia. Review of experimental studies.  Neurol Res. 2003;  25 457-464
  • 64 Leker R R, Gai N, Mechoulam R, Ovadia H. Drug-induced hypothermia reduces ischemic damage: effects of the cannabinoid HU-210.  Stroke. 2003;  34 2000-2006
  • 65 Guscott M R, Egan E, Cook G P. et al . The hypothermic effect of 5-CT in mice is mediated through the 5-HT7 receptor.  Neuropharmacology. 2003;  44 1031-1037
  • 66 Gordon C J, McMahon B, Richelson E. et al . Neurotensin analog NT77 induces regulated hypothermia in the rat.  Life Sci. 2003;  73 2611-2623
  • 67 The Hypothermia After Cardiac Arrest Study Group . Mild therapeutic hypothermia to improve the neurological outcome after cardiac arrest.  N Engl J Med. 2002;  346 549-556
  • 68 Bernard S A, Bernard M B, Gray T W. et al . Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia.  N Engl J Med. 2002;  346 557-563
  • 69 Kollmar R, Schwab S. Hypothermiebehandlung des Schlaganfalls, Status und Perspektiven.  Akt Neurol. 2003;  30 487-496
  • 70 Schwab S, Schwarz S, Spranger M. et al . Moderate hypothermia in the treatment of patients with severe middle cerebral artery infarction.  Stroke. 1998;  29 2461-2466
  • 71 Georgiadis D, Schwarz S, Evans D H. et al . Cerebral autoregulation under moderate hypothermia in patients with acute stroke.  Stroke. 2002;  33 3026-3029
  • 72 Krieger D W, Georgia M A De, Abou-Chebl A. et al . Cooling for acute ischemic brain damage (cool aid): an open pilot study of induced hypothermia in acute ischemic stroke.  Stroke. 2001;  32 1847-1854
  • 73 Schwab S, Georgiadis D, Berrouschot J. et al . Feasibility and safety of moderate hypothermia after massive hemispheric infarction.  Stroke. 2001;  32 2033-2035
  • 74 Kammersgaard L P, Rasmussen B H, Jorgensen H S. et al . Feasibility and safety of inducing modest hypothermia in awake patients with acute stroke through surface cooling: A case-control study: the Copenhagen Stroke Study.  Stroke. 2000;  31 2251-2256
  • 75 Gadkary C S, Alderson P, Signorini D F. Therapeutic hypothermia for head injury.  Cochrane Database Syst Rev. 2002;  1 CD001048
  • 76 Hindfelt B. The prognostic significance of subfebrility and fever in ischaemic cerebral infarction.  Acta Neurol Scand. 1976;  53 72-79
  • 77 Grau A J, Buggle F, Schnitzler P. et al . Fever and infection early after ischemic stroke.  J Neurol Sci. 1999;  171 115-120
  • 78 Langhorne P, Stott D J, Robertson L. et al . Medical complications after stroke: a multicenter study.  Stroke. 2000;  31 1223-1229
  • 79 Hilker R, Poetter C, Findeisen N. et al . Nosocomial pneumonia after acute stroke: implications for neurological intensive care medicine.  Stroke. 2003;  34 975-981
  • 80 Prass K, Meisel C, Wolf T. et al .Striking the immune system - Stroke induced immune depression. In: Krieglstein J (ed) Pharmacology of cerebral ischemia. Stuttgart; medpharm 2003: 217-221
  • 81 Sax H, Pittet D. Swiss-NOSO Network. Interhospital differences in nosocomial infection rates: importance of case-mix adjustment.  Arch Intern Med. 2002;  162 2437-2442
  • 82 Smyth E T, Emmerson A M. Surgical site infection surveillance.  J Hosp Infect. 2000;  45 173-184
  • 83 Woiciechowsky C, Schoning B, Lanksch W R. et al . Mechanisms of brain-mediated systemic anti-inflammatory syndrome causing immunodepression.  J Mol Med. 1999;  77 769-780
  • 84 Davenport R J, Dennis M S, Wellwood I, Warlow C P. Complications after acute stroke.  Stroke. 1996;  27 415-420
  • 85 Vernino S, Brown R D, Sejvar J J. et al . Cause-specific mortality after first cerebral infarction: a population-based study.  Stroke. 2003;  34 1828-1832
  • 86 Katzan I L, Cebul R D, Husak S H. et al . The effect of pneumonia on mortality among patients hospitalized for acute stroke.  Neurology. 2003;  60 620-625
  • 87 Perry L, Love C P. Screening for dysphagia and aspiration in acute stroke: a systematic review.  Dysphagia. 2001;  16 7-18
  • 88 Finegold S M. Aspiration pneumonia.  Rev Infect Dis. 1991;  13 S737-S742
  • 89 Marik P E. Aspiration pneumonitis and aspiration pneumonia.  N Engl J Med. 2001;  344 665-671
  • 90 Prass K, Meisel C, Hoflich C. et al . Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation.  J Exp Med. 2003;  198 725-736
  • 91 Davenport R J. Starve a neuron, feed pneumonia.  SAGE KE. 2003;  36 nw124-124
  • 92 Stroke Unit Trialists' Collaboration. Organised inpatient (stroke unit) care for stroke (Cochrane Review). In: The Cochrane Library, Issue 3. Oxford; 2003, Update Software
  • 93 Evans A, Perez I, Harraf F. et al . Can differences in management processes explain different outcomes between stroke unit and stroke-team care?.  Lancet. 2001;  358 1586-1592
  • 94 Meisel C, Prass K, Braun J. et al . Preventive antibacterial treatment improves the general medical and neurological outcome in a mouse model of stroke.  Stroke. 2004;  35 2-6
  • 95 Jorgensen H, Nakayama H, Raaschou H O, Olsen T S. Stroke in patients with diabetes. The Copenhagen Stroke Study.  Stroke. 1994;  25 1977-1984
  • 96 Pulsinelli W A, Levy D E, Sigsbee B. et al . Increased damage after ischemic stroke in patients with hyperglycemia with or without established diabetes mellitus.  Am J Med. 1983;  74 540-544
  • 97 Oppenheimer S M, Hoffbrand B I, Oswald G A, Yudkin J S. Diabetes mellitus and early mortality from stroke.  Br Med J. 1985;  291 1014-1015
  • 98 Tracey F, Stout R W. Hyperglycemia in the acute phase of stroke and stress response.  Stroke. 1994;  25 524-525
  • 99 Siesjo B K. Acidosis and ischemic brain damage.  Neurochem Pathol. 1988;  9 31-88
  • 100 Myers R E, Yamagutchi M. Nervous system effects of cardiac arrest in monkeys.  Arch Neurol. 1977;  34 65-74
  • 101 Pulsinelli W A, Waldman S, Rawlinson D, Plum F. Moderate hyperglycemia augments ischemic brain damage: a neuropathologic study in the rat.  Neurology. 1982;  32 1239-1246
  • 102 Jorgensen H S, Nakayama H, Raaschou H O, Olsen T S. Effect of blood pressure and diabetes on stroke in progression.  Lancet. 1994;  344 156-159
  • 103 Weir C J, Murray G D, Dyker A G, Lees K R. Is hyperglycaemia an independent predictor of poor outcome after acute stroke? Results of a long-term follow-up study.  BMJ. 1997;  314 1303-1306
  • 104 Bruno A, Biller J, Adams H P. et al . Acute blood glucose level and outcome from ischemic stroke. Trial of ORG 10172 in Acute Stroke Treatment (TOAST) Investigators.  Neurology. 1999;  52 280-284
  • 105 Bruno A, Levine S R, Frankel M R. et al . NINDS rt-PA Stroke Study Group. Admission glucose level and clinical outcomes in the NINDS rt-PA Stroke Trial.  Neurology. 2002;  59 669-674
  • 106 Capes S E, Hunt D, Malmberg K. et al . Stress hyperglycemia and prognosis of stroke in nondiabetic and diabetic patients: a systematic overview.  Stroke. 2001;  32 2426-2432
  • 107 Baird T A, Parsons M W, Phanh T. et al . Persistent poststroke hyperglycemia is independently associated with infarct expansion and worse clinical outcome.  Stroke. 2003;  34 2208-2214
  • 108 Alvarez-Sabin J, Molina C A, Montaner J. et al . Effects of admission hyperglycemia on stroke outcome in reperfused tissue plasminogen activator-treated patients.  Stroke. 2003;  34 1235-1241
  • 109 Counsell C, McDowall M, Dennis M. Hyperglycaemia after acute stroke. Other models find that hyperglycaemia is not independent predictor.  BMJ. 1997;  315 810
  • 110 Schurr A. Glucose and the ischemic brain: a sour grape or a sweet treat?.  Curr Opin Clin Nutr Metab Care. 2001;  4 287-292
  • 111 Smith-Swintosky V L, Pettigrew L C, Sapolsky R M. et al . Metyrapone, an inhibitor of glucocorticoid production, reduces brain injury induced by focal and global ischemia and seizures.  J Cereb Blood Flow Metab. 1996;  16 585-598
  • 112 Schurr A, Payne R S, Miller J J, Tseng M T. Preischemic hyperglycemia-aggravated damage: evidence that lactate utilization is beneficial and glucose-induced corticosterone release is detrimental.  J Neurosci Res. 2001;  66 782-789
  • 113 Schurr A, West C A, Reid K H. et al . Increased glucose improves recovery of neuronal function after cerebral hypoxia in vitro.  Brain Res. 1987;  421 135-139
  • 114 Tian G F, Baker A J. Protective effect of high glucose against ischemia-induced synaptic transmission damage in rat hippocampal slices.  J Neurophysiol. 2002;  88 236-248
  • 115 Seo S Y, Kim E Y, Kim H, Gwag B J. Neuroprotective effect of high glucose against NMDA, free radical, and oxygen-glucose deprivation through enhanced mitochondrial potentials.  J Neurosci. 1999;  19 8849-8855
  • 116 Ginsberg M D, Prado R, Dietrich W D. et al . Hyperglycemia reduces the extent of cerebral infarction in rats.  Stroke. 1987;  18 570-574
  • 117 Zasslow M A, Pearl R G, Shuer L M. et al . Hyperglycemia decreases acute neuronal ischemic changes after middle cerebral artery occlusion in cats.  Stroke. 1989;  20 519-523
  • 118 Parsons M W, Barber P A, Desmond P M. et al . Acute hyperglycemia adversely affects stroke outcome: a magnetic resonance imaging and spectroscopy study.  Ann Neurol. 2002;  52 20-28
  • 119 Voll C L, Auer R N. Insulin attenuates ischemic brain damage independent of its hypoglycemic effect.  J Cereb Blood Flow Metab. 1991;  11 1006-1014
  • 120 Auer R N. Insulin, blood glucose levels, and ischemic brain damage.  Neurology. 1998;  51 S39-43
  • 121 Scott J F, Robinson G M, French J M. et al . Glucose potassium insulin infusions in the treatment of acute stroke patients with mild to moderate hyperglycemia: the Glucose Insulin in Stroke Trial (GIST).  Stroke. 1999;  30 793-799
  • 122 Sulter G, Elting J W, Langedijk M. et al . Admitting acute ischemic stroke patients to a stroke care monitoring unit versus a conventional stroke unit: a randomized pilot study.  Stroke. 2003;  34 101-104

Prof. Dr. Ulrich Dirnagl

Abt. für Experimentelle Neurologie · Charité Universitätsmedizin Berlin

Schumannstraße 20/21

10098 Berlin

Email: ulrich.dirnagl@charite.de

    >