Subscribe to RSS
DOI: 10.1055/s-2004-820052
Solid-Phase Synthesis of Indol-2-ones by Microwave-Assisted Radical Cyclization
Publication History
Publication Date:
25 March 2004 (online)
Abstract
Solid-phase synthesis of indol-2-ones (2-oxindoles) by means of aryl radical cyclization of resin-bound N-(2-bromophenyl)acrylamides using Bu3SnH is described. Among various solvents tested, DMF was found to be the best choice for the radical cyclization inducing a reagent concentration effect of the polymer support. The reaction proceeded smoothly under microwave irradiation to give the desired indol-2-ones within a very short reaction time in comparison to conventional thermal heating. In this reaction, various indol-2-ones were synthesized by using commercially available 2-bromoanilines and acryloyl chloride derivatives.
Key words
radical reactions - microwave - indol-2-one - combinatorial chemistry - solid-phase synthesis
- 1
Robinson RP.Reiter LA.Barth WE.Campeta AM.Cooper K.Cronin BJ.Destito R.Donahue KM.Falkner FC.Fiese EF.Johnson DL.Kuperman AV.Liston TE.Malloy D.Martin JJ.Mitchell DY.Rusek FW.Shamblin SL.Wright CF. J. Med. Chem. 1996, 39: 10 - 2
Nagamine J.Nagata R.Seki H.Nomura-Akimaru N.Ueki Y.Kumagai K.Taiji M.Noguchi H. J. Endocrinology 2001, 171: 481 - 3
Sun L.Tran N.Liang C.Hubbard S.Tang F.Lipson K.Schreck R.Zhou Y.McMahon G.Tang C. J. Med. Chem. 2000, 43: 2655 - 4
Hewawasam P.Erway M.Moon SL.Knipe J.Weiner H.Boissard CG.Post-Munson DJ.Gao Q.Huang S.Gribkoff VK.Meanwell NA. J. Med. Chem. 2002, 45: 1487 -
5a
Tsuda M.Mugishima T.Komatsu K.Sone T.Tanaka M.Mikami Y.Shiro M.Hirai M.Ohizumi Y.Kobayashi J. Tetrahedron 2003, 59: 3227 -
5b
Carletti I.Banaigs B.Amade P. J. Nat. Prod. 2000, 63: 981 -
5c
Liu H.-M.Feng X.-Z. Phytochemistry 1993, 33: 707 -
5d
Weniger B.Jiang Y.Anton R.Bastida J.Varea T.Quirion J.-C. Phytochemistry 1993, 32: 1587 -
5e
Lin L.-Z.Cordell GA.Ni C.-Z.Clardy J. Phytochemistry 1991, 30: 1311 -
5f
Lin L.-Z.Cordell GA.Ni C.-Z.Clardy J. Phytochemistry 1990, 29: 3013 -
5g
Cui C.-B.Kakeya H.Osada H. Tetrahedron 1996, 52: 12651 -
5h
Jossang A.Jossang P.Hadi HA.Sévenet T.Bodo B. J. Org. Chem. 1991, 56: 6527 -
6a
Dounay AB.Hatanaka K.Kodanko JJ.Oestreich M.Overman LE.Pfeifer LA.Weiss MM. J. Am. Chem. Soc. 2003, 125: 6261 -
6b
Grigg R.Millington EL.Thornton-Pett M. Tetrahedron Lett. 2002, 43: 2605 -
6c
Grigg R.Major JP.Martin FM.Whittaker M. Tetrahedron Lett. 1999, 40: 7709 -
6d
Ashimori A.Bachand B.Overman LE.Poon DJ. J. Am. Chem. Soc. 1998, 120: 6477 -
6e
Matsuura T.Overman LE.Poon DJ. J. Am. Chem. Soc. 1998, 120: 6500 -
6f
Arumugam V.Routledge A.Abell C.Balasubramanian S. Tetrahedron Lett. 1997, 38: 6473 -
6g
Ashimori A.Matsuura T.Overman LE.Poon DJ. J. Org. Chem. 1993, 58: 6949 -
7a
Ganguly AK.Wang CH.David M.Bartner P.Chan TM. Tetrahedron Lett. 2002, 43: 6865 -
7b
Ishibashi H.Kobayashi T.Machida N.Tamura O. Tetrahedron 2000, 56: 1469 -
7c
Escolano C.Jones K. Tetrahedron Lett. 2000, 41: 8951 -
7d
Jones K.Brunton SA.Gosain R. Tetrahedron Lett. 1999, 40: 8935 -
7e
Cossy J.Cases M.Pardo DG. Tetrahedron Lett. 1998, 39: 2331 -
7f
Jones K.Ho TCT.Wilkinson J. Tetrahedron Lett. 1995, 36: 6743 -
7g
Jones K.Storey JMD. Tetrahedron Lett. 1993, 34: 7797 -
7h
Hart DJ.Wu SC. Tetrahedron Lett. 1991, 32: 4099 -
7i
Jones K.McCarthy C. Tetrahedron Lett. 1989, 30: 2657 -
7j
Clark AJ.Jones K. Tetrahedron Lett. 1989, 30: 5485 -
7k
Bowman WR.Heaney H.Jordan BM. Tetrahedron Lett. 1988, 29: 6657 -
8a
Ishibashi H.Sato T.Ikeda M. Synthesis 2002, 695 -
8b
Bowman WR.Cloonan MO.Krintel SL. J. Chem. Soc., Perkin Trans. 1 2001, 2885 -
8c
Bowman WR.Bridge CF.Brookes P. J. Chem. Soc., Perkin Trans. 1 2000, 1 -
8d
Jasperse CP.Curran DP.Fevig TL. Chem. Rev. 1991, 1237 - 9
Jia G.Iida H.Lown JW. Synlett 2000, 603 -
10a
Olofsson K.Kim S.-Y.Larhed M.Curran DP.Hallberg A. J. Org. Chem. 1999, 64: 4539 -
10b For the first example of a microwave-heated tin hydride mediated radical reaction, see:
Bose AK.Manhas MS.Ghosh M.Shah M.Raju VS.Bari SS.Newaz SN.Banik BK.Chaudhary AG.Barakat KJ. J. Org. Chem. 1991, 56: 6968 -
15a
Uozumi Y.Danjo H.Hayashi T. Tetrahedron Lett. 1997, 38: 3557 -
15b
Uozumi Y.Danjo H.Hayashi T. Tetrahedron Lett. 1998, 39: 8303 -
15c
Danjo H.Tanaka D.Hayashi T.Uozumi Y. Tetrahedron 1999, 55: 14341 -
15d
Uozumi Y.Shibatomi K. J. Am. Chem. Soc. 2001, 123: 2919 -
15e
Uozumi Y.Danjo H.Hayashi T. J. Org. Chem. 1999, 64: 3384 -
15f
Uozumi Y.Nakai Y. Org. Lett. 2002, 4: 2997 -
15g
Uozumi Y.Kobayashi Y. Heterocycles 2003, 59: 71 - 16
Morphy JR.Rankovic Z.York M. Tetrahedron Lett. 2001, 42: 7509
References
The reaction temperature rose to 100 ºC within 3 min, to 120 °C within 10 min and to 170 ºC within 20 min, and then remained constant.
12The reaction of 2-bromoaniline 5 with resin-bound benzyl chloride, benzyl bromide, and trityl chloride did not proceed at all owing to low reactivity of the amino group of 5. Introduction of 2-bromoaniline 5 to 4-(formyl-3-methoxy-phenoxy)butyryl AM resin by reductive alkylation also failed.
13Focused microwave irradiations were carried out with a DiscoverTM Focused Microwave Synthesis (CEM Corporation).
14A vessel for microwave reaction was filled with the resin-bound N-(2-bromophenyl)-3-phenylacrylamide 7Aa (108 mg, 0.05 mmol), DMF (1 ml), Bu3SnH (0.134 ml, 0.50 mmol) and AIBN (8 mg, 0.05 mmol), and then sealed with a Teflon septum. The vial was positioned in the cavity of the microwave reactor and irradiated with a maximum power of 50 W for 45 min. After cooling, the resin was collected by filtration and washed with MeOH (5 × 1 mL) and CH2Cl2 (5 × 1 mL). The resin was treated with 10% TFA in CH2Cl2 (1 mL), and the mixture was agitated for 30 min at r.t. The reaction mixture was passed through VARIAN BOND ELUT® Jr-PSA and eluted with 5% MeOH in CH2Cl2 (3 mL) to give desired indol-2-one 8Aa. Compound 8Aa: 1H NMR (CDCl3) δ = 7.64 (d, J = 8.4 Hz, 2 H, ArH), 7.17-7.28 (m, 4 H, ArH), 7.08-7.10 (m, 2 H, ArH), 7.03 (d, J = 7.2 Hz, 1 H, ArH), 6.97 (dd, J = 7.6, 0.8 Hz, 1 H, ArH), 6.93 (d, J = 8.8 Hz, 2 H, ArH), 6.46 (d, J = 7.6 Hz, 1 H, ArH), 5.08 (d, J = 16.0 Hz, 1 H, NCH2Ar), 4.63 (d, J = 16.0 Hz, 1 H, NCH2Ar), 3.87 (dd, J = 8.0, 4.0 Hz, 1 H, COCHAr), 3.48 (dd, J = 13.6, 4.0 Hz, 1 H, CH2Ar), 3.18 (dd, J = 13.6, 8.0 Hz, 1 H, CH2Ar). ESI-MS (+ve): m/z = 357.2 [M + H]+.