Semin Thromb Hemost 2004; 30: 25-30
DOI: 10.1055/s-2004-823000
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Low-Molecular-Weight Heparin in Thrombosis and Cancer

Shaker A. Mousa1
  • 1Albany College of Pharmacy and Pharmaceutical Research Institute (PRI) at Albany, Albany, New York
Further Information

Publication History

Publication Date:
13 April 2004 (online)

Venous thromboembolism (VTE) is a recognized complication of malignant disease and multiple risk factors contribute to the hypercoagulability that commonly accompanies malignancy. Thromboprophylaxis with antithrombotic drugs such as the low-molecular-weight heparins (LMWHs) can be used to control the hypercoagulable state and to reduce the incidence of VTE in patients with cancer. Clinical and biochemical data suggest that LMWHs may also inhibit tumor growth, leading to a survival benefit in these patients. Many cancer patients reportedly have a hypercoaguable state, with recurrent thrombosis due to the impact of cancer cells and chemotherapy or radiotherapy on the coagulation cascade. Studies have demonstrated that unfractionated heparin (UFH) or its low-molecular-weight fractions interfere with various processes involved in tumor growth and metastasis. Clinical trials in cancer patients with thromboembolic disorders have suggested a clinically relevant effect of LMWHs (as compared with UFH) on the survival of cancer patients with deep vein thrombosis. Similarly, the impact of warfarin on the survival of cancer patients with thromboembolic disorders was demonstrated in certain tumor types. Studies from our laboratory demonstrated a significant role for LMWH, warfarin, anti-VIIa, and LMWH releasable tissue factor pathway inhibitor on the regulation of angiogenesis, tumor growth, and tumor metastasis. However, a direct anticancer effect for heparin in cancer patients without thrombosis still remains to be clinically documented.

REFERENCES

  • 1 Mousa S A. Anticoagulants in thrombosis and cancer: the missing link.  Semin Thromb Hemost. 2002;  28 45-52
  • 2 Mousa S A, Fareed J W. Advances in anticoagulant, antithrombotic and thrombolytic drugs.  Expert Opin Investig Drugs. 2001;  10 157-162
  • 3 Chambers A F. The metastatic process: basic research and clinical implications.  Oncol Res. 1999;  11 161-168
  • 4 Chambers A F, MacDonald I C, Schmidt E E et al.. Steps in tumor metastasis: new concepts from intra-vital video microscopy.  Cancer Metastasis Rev. 1995;  14 279-301
  • 5 Borsig L, Wong R, Feramisco J, Nadeau D R, Varki N M, Varki A. Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis.  Proc Natl Acad Sci USA. 2001;  98 3352-3357
  • 6 Koenig A, Norgard-Sumnicht K, Linhardt R, Varki A. Differential interactions of heparin and heparin sulfate glycosaminoglycans with the selectins.  J Clin Invest. 1998;  101 877-889
  • 7 Varki A, Varki N M. P-selectin, carcinoma metastasis and heparin: novel mechanistic connections with therapeutic implications.  Braz J Med Biol Res. 2001;  34 711-717
  • 8 Hirsh J, Levine M N. Low molecular weight heparin.  Blood. 1992;  79 1-17
  • 9 Nielsen J I, Østergaard P. Chemistry of heparin and low molecular weight heparin.  Acta Chir Scand. 1988;  543(suppl) 52-56
  • 10 Engelberg H. Actions of heparin that may affect the malignant process.  Cancer. 1999;  85 257-272
  • 11 Linhardt R J, Gunay N S. Production and chemical processing of low molecular weight heparins.  Semin Thromb Hemost. 1999;  25 5-16
  • 12 Mousa S A, Bozarth J, Larnkjaer A, Johanson K. Vascular effects of heparin molecular weight fractions and LMWH on the release of TFPI from human endothelial cells.  Blood. 2000;  16 59 , (abst 3928)
  • 13 Hull R D, Raskob G E, Pineo G F et al.. Subcutaneous low-molecular weight heparin compared with continuous intravenous heparin in the treatment of proximal-vein thrombosis.  N Engl J Med. 1992;  326 975-982
  • 14 Simonneau G, Sors H, Charbonnier B et al.. A comparison of low-molecular-weight heparin with unfractionated heparin for acute pulmonary embolism.  N Engl J Med. 1997;  337 663-669
  • 15 Goldberg R J, Seneff M, Gore J M et al.. Occult malignant neoplasm in patients with deep venous thrombosis.  Arch Intern Med. 1987;  147 251-253
  • 16 Baron J A, Gridley G, Weiderpass E, Nyren O, Linet M. Venous thromboembolism and cancer.  Lancet. 1998;  351 1077-1080
  • 17 Rickles F R, Edwards R L. Activation of blood coagulation in cancer: Trousseau's syndrome revisited.  Blood. 1983;  62 14-31
  • 18 Levine M N. Prevention of thrombotic disorders in cancer patients undergoing chemotherapy.  Thromb Haemost. 1997;  78 133-136
  • 19 Falanga A. Mechanisms of hypercoagulation in malignancy and during chemotherapy.  Haemostasis. 1998;  28(suppl) 50-60
  • 20 Kakkar A J, De Ruvo N, Tebbutt S, Williamson R CN. Extrinsic pathway activation with elevated tissue factor and factor VIIa in patients with cancer.  Lancet. 1995;  346 1004-1005
  • 21 Koopman M MW, Prandoni P, Piovella F et al.. Treatment of venous thrombosis with intravenous unfractionated heparin administered in the hospital as compared with subcutaneous low-molecular-weight heparin administered at home.  N Engl J Med. 1996;  334 682-687
  • 22 Kakkar A J, Williamson R C. Prevention of venous thromboembolism in cancer using low molecular weight heparin.  Haemostasis. 1997;  27(suppl 1) 32-37
  • 23 Zacharski L R, Ornstein D L. Heparin and cancer.  Thromb Haemost. 1998;  80 10-23
  • 24 von Tempelhoff G F, Harenberg J, Neimann F et al.. Effect of low molecular weight heparin (Certoparin) versus unfractionated heparin on cancer survival following breast and pelvic cancer surgery: a prospective randomized double-blind trial.  Int J Oncol. 2000;  16 815-824
  • 25 Zacharski L R. Anticoagulant in cancer treatment: malignancy as a solid phase coagulopathy.  Cancer Lett. 2002;  186 1-9
  • 26 Meyers G, Marjanovic Z, Valcke J et al.. Comparison of LMWH and warfarin for the secondary prevention of venous thromboembolism in patients with cancer.  Arch Intern Med. 2002;  162 1729-1735
  • 27 Trousseau A. Plegmasia alba dolens. In: Baillier JB Clinique de l'Hotel-Dieu de Paris, 2nd ed. 1865 3: 654-712
  • 28 Haward W. Phlebitis and thrombosis.  Lancet. 1906;  1 650-655
  • 29 Dvorak H F. Thrombosis and cancer.  Hum Pathol. 1987;  18 275-284
  • 30 Dvorak H F, Senger D R, Dvorak A M. Fibrin as a component of the tumor stroma: origins and biological significance.  Cancer Metastasis Rev. 1983;  2 41-73
  • 31 Mousa S A. Mechanisms of angiogenesis in vascular disorders: potential therapeutic targets. In: Landes RG Angiogenesis Inhibitors and Stimulators: Potential Therapeutic Implications. Georgetown, TX; 2000: 1-12
  • 32 Falanga A, Rickles F R. Pathophysiology of the thrombophilic state in the cancer patient.  Semin Thromb Hemost. 1999;  25 173-182
  • 33 Markus G. The role of haemostasis and fibrinolysis in the metastatic spread of cancer.  Semin Thromb Hemost. 1984;  10 61-72
  • 34 Ruf W, Mueller B M. Tissue factor in cancer angiogenesis and metastasis.  Curr Opin Hematol. 1996;  3 379-384
  • 35 Zhang Y, Deng Y, Luther T et al.. Tissue factor controls the balance of angiogenic and anti-angiogenic properties of tumor cells in mice.  J Clin Invest. 1994;  94 1320-1327
  • 36 Engelberg H. Actions of heparin in the atherosclerotic process.  Pharmacol Rev. 1996;  48 327-352
  • 37 Nelson R M, Ceccioni D, Roberts W G et al.. Heparin oligosaccharides bind L- and P-selectins and inhibit acute inflammation.  Blood. 1993;  82 3253-3258
  • 38 Mousa S A, Mohamed S. Anti-angiogenesis efficacy of the LMWH, tinzaparin and TFPI.  Blood. 1999;  94 22(abst)
  • 39 Amirkhosravi A, Mousa S A, Amaya M, Francis J. Anti-metastatic effect of tinzaparin, a low-molecular-weight heparin.  J Thromb Haemost. 2003;  1 (9) 1972-1976
  • 40 Vlodavsky I, Goldshmidt O. Properties and function of heparanase in cancer metastasis and angiogenesis.  Haemostasis. 2001;  31(suppl 1) 60-63

Shaker A MousaPh.D. 

Albany College of Pharmacy, 106 New Scotland Avenue

Albany, NY 12208-3492

Email: mousas@acp.edu