Dtsch Med Wochenschr 2004; 129(31/32): 1674-1678
DOI: 10.1055/s-2004-829013
Originalien
Osteologie / Kardiologie
© Georg Thieme Verlag Stuttgart · New York

Einfluss des Immunsuppressiva-induzierten Hypogonadismus auf den Knochenmetabolismus nach Herztransplantation

Role of immunosuppression induced hypogonadism on bone metabolism after cardiac transplantationJ. Stief1 , H. Y. Sohn1 , A. Alt1 , P. Überfuhr2 , K. Theisen1 , H-U. Stempfle1
  • 1Medizinische Poliklinik Innenstadt, Ludwig Maximilians Universität München
  • 2Herzchirurgie Klinikum Großhadern, Ludwig Maximilians Universität München
Further Information

Publication History

eingereicht: 15.10.2003

akzeptiert: 29.4.2004

Publication Date:
23 July 2004 (online)

Hintergrund und Fragestellung: Nach Herztransplantation (HTx) kommt es gehäuft zu einer Osteoporose. In wie weit das Auftreten eines Cyclosporin-induzierten Hypogonadismus die Posttransplantations-Osteoporose fördert und welche Therapiemaßnahmen geeignet sind, ist bislang unklar. Ziel dieser Studie war es zu untersuchen, wie häufig bei Männern nach HTx ein Hypogonadismus auftritt und inwiefern dieser sich auf die Knochendichte auswirkt. Des weiteren sollte der Effekt einer Testosteronsubstitution auf die Knochendichte hypogonadaler Patienten überprüft werden.

Patienten und Methode: Anhand des Hormonstatus wurden 88 Herztransplantierte einer normogonadalen bzw. hypogonadalen Gruppe zugeteilt. Bei Einschluss sowie nach 1 (n = 76) und 2 (n = 38) Jahren wurde die Knochendichte der Lendenwirbelsäule mittels Dual Energy X-Ray Absorptiometrie (DEXA) (g/cm2, T-Score) untersucht. Alle Patienten erhielten als Basismedikation Kalzium und Vitamin D, hypogonadale Patienten wurden zusätzlich mit Testosteron substituiert.

Ergebnisse: 21 Patienten (24 %) zeigten unabhängig vom Alter einen Hypogonadismus. Die Knochendichte hypogonadaler Patienten (BMD = 0,8070 g/cm 2, T-Wert = -2,6514) war gegenüber der normogonadaler (BMD = 0,9882 g/cm 2, T-Wert = -1,0568) zusätzlich signifikant vermindert (p < 0,001). Obwohl hypogonadale Patienten mit Testosteron substituiert wurden, zeigte sich bei den im Verlauf nach 1 bzw. 2 Jahren untersuchten Patienten keine signifikant stärkere Zunahme der Knochendichte gegenüber normogonadalen Patienten.

Folgerung: Bei männlichen Herztransplantierten fand sich gehäuft ein Hypogonadismus, welcher mit einer signifikant verminderten Knochendichte einherging. Unter einer additiven Testosteronsubstitution war keine signifikante Steigerung der Knochendichte zu beobachten.

Background and objective: Accelerated bone loss is a well recognized complication after cardiac transplantation (HTx). The role of an immunosuppressive-induced hypogonadism, a well-known cause of osteoporosis in men and its prevention are less defined after HTx. The aim of this study was first, to evaluate the incidence of hypogonadism after HTx and its influence on bone mineral metabolism and second, to assess the effect of a testosterone replacement therapy in hypogonadal transplants.

Patients and methods: Due to hormonal status, 88 male cardiac transplants were randomised to a normogonadal or hypogonadal group. At baseline as well as after 1 and 2 years bone mineral density (BMD g/cm2, T-score) was measured at the lumbar spine with DEXA. All patients received a basic therapy of calcium and vitamin D. The hypogonadal patients received additional testosterone.

Results: 21 patients (24 %) showed an age-independent hypogonadism. Hypogonadal transplants showed a significant lower BMD (p < 0,001) (BMD = 0,8070 g/cm2, T-value = -2,6514) than normogonadal patients (BMD = 0,9882 g/cm 2, T-value = -1,0568). Despite testosterone replacement hypogonadal patients showed no significant additional increase in BMD over 1 - 2 years compared with the normogonadal.

Conclusion: Male cardiac transplants in all age groups show an high prevalence of hypogonadism (˜25 %) which contributes to a significant bone loss. An additional testosterone substitution did not significantly increase BMD.

Literatur

  • 1 Anderson F H, Francis R M, Selby P L, Cooper C. Sex hormones and osteoporosis in men.  Calcif Tissue Int. 1998;  62 185-188
  • 2 Baillie S P, Davison C E, Johnson F J, Francis R M. Pathogenesis of vertebral crush fractures in men.  Age Ageing. 1992;  21 139-141
  • 3 Behre H M, Kliesch S, Leifke E, Link T, Nieschlag E. Long-term effect of testosterone therapy on bone mineral density in hypogonadal men.  J Clin Endocrinol Metab. 1997;  82 2386-2390
  • 4 Bertani T, Ferrazzi P, Schieppati A. et al . Nature and extent of glomerular injury induced by cyclosporine in heart transplant patients.  Kidney Int. 1991;  40 243-250
  • 5 Bowman A R, Sass D A, Dissanayake I R. et al . The role of testosterone in cyclosporine- induced osteopenia.  J Bone Miner Res. 1997;  12 607-615
  • 6 Campion J M, Maricic M J. Osteoporosis in men.  Am Fam Physician. 2003;  67 1521-1526
  • 7 Erben R G, Brunner K S, Breig B, Eberle J, Goldberg M, Hofbauer L C. Skeletal effects of cyclosporine A are gender related in rats.  Endocrinology. 2003;  144 40-49
  • 8 Erben R G, Stangassinger M, Gartner R. Skeletal effects of low-dose cyclosporine A in aged male rats: lack of relationship to serum testosterone levels.  J Bone Miner Res. 1998;  13 79-87
  • 9 Finkelstein J S, Klibanski A, Neer R M. et al . Increases in bone density during treatment of men with idiopathic hypogonadotropic hypogonadism.  J Clin Endocrinol Metab. 1989;  69 776-783
  • 10 Hahn T J, Halstead L R, Baran D T. Effects of short term glucocorticoid administration on intestinal Kalzium absorption and circulating vitamin D metabolite concentrations in man.  J Clin Endocrinol Metab. 1981;  52 111-115
  • 11 Kanan B D. Cyclosporine.  NEJM. 1989;  321 1725-1738
  • 12 Kanis J A, Melton L J, Christiansen C, Johnston C C, Khaltaev N. The diagnosis of osteoporosis.  J Bone Miner Res. 1994;  9 1137-1141
  • 13 Kawana K, Takahashi M, Kushide K, Hoshino H, Sakata S, Inoue T. The effect of cyclosporine A administration on bone metabolism in the rat evaluated by biochemical markers.  J Endocrinol Invest. 1996;  19 499-504
  • 14 Kochi S, Takanaga H, Matsuo H, Naito M, Tsuruo T, Sawada Y. Effect of cyclosporine A or tacrolimus on the function of blood-brain barrier cells.  Eur J Pharmacol. 1999;  372 287-295
  • 15 Lukert B P, Raisz L G. Glucocorticoid- induced osteoporosis: pathogenesis and management.  Ann Intern Med. 1990;  112 352-364
  • 16 Movsowitz C, Epstein S, Fallon M, Ismail F, Thomas S. Cyclosporine-A in vivo produces severe osteopenia in the rat effect of dose and duration of administration.  Endocrinology. 1988;  123 2571-2577
  • 17 Muchmore J S, Cooper K C, Ye Y, Schlegel V, Pribil A, Zuhdi N. Prevention of loss of vertebral bone density in heart transplant patients.  J Heart Lung Transplant. 1992;  11 959-963
  • 18 Rajfer J, Sikka S C, Lemmi C, Koyle M A. Cyclosporine inhibits testosterone biosynthesis in the rat testis.  Endocrinology. 1987;  121 586-589
  • 19 Reid I R, Veale A G, France J T. Glucocorticoid osteoporosis.  J Asthma. 1994;  31 7-18
  • 20 Reid I R. Glucocorticoid osteoporosis- mechanisms and management.  Eur J Endocrinol. 1997;  137 209-217
  • 21 Reid I R, Ibbertson H K, France J T, Pybus J. Plasma testosterone concentrations in asthmatic men treated with glucocorticoids.  Br Med J. 1985;  291 574
  • 22 Rodino M A, Shane E. Osteoporosis after organ transplantation.  Am J Med. 1998;  104 459-469
  • 23 Sambrook P N, Kelly P J, Fontana D, Nguyen T, Keogh A, Macdonald D. Mechanism of rapid bone loss following cardiac transplantation.  Osteoporos Int. 1994;  4 273-276
  • 24 Scane A C, Sutcliffe A M, Francis R M. Osteoporosis in men.  Baillieres Clin Rheumatol. 1993;  7 589-601
  • 25 Schlosberg M, Movsowitz C, Epstein S, Ismail F, Fallon M D, Thomas S. The effect of cyclosporine A administration and its withdraw on bone mineral metabolism in the rat.  Endocrinology. 1989;  124 2179-2184
  • 26 Seethalakshmi L, Flores C, Carboni A A, Bala R, Diamond D A, Menon M. Cyclosporine: its effects on testicular function and fertility in the prepubertal rat.  J Androl. 1990;  11 17-24
  • 27 Seethalakshmi L, Flores C, Malhotra R K. et al . Mechanism of cyclosporine}s action in the inhibition of testosterone biosynthesis by rat Leydig cells in vitro.  Transplantation. 1992;  53 190-195
  • 28 Shane E, Rivas M, McMahon D. et al . Bone loss and turnover after cardiac transplantation.  J Clin Endocrinol Metab. 1997;  82 1497-1506
  • 29 Shane E, Mancini D, Aaronson K. et al . Bone mass, vitamin D deficiency, and hyperparathyreoidism in congestive heart failure.  Am J Med. 1997;  103 197-207
  • 30 Sih R, Morley J E, Kaiser F E, Perry H M, Ping P, Ross C. Testosterone replacement in older hypogonadal men: a 12-month randomized controlled trial.  J Clin Endocrinol Metab. 1997;  82 1661-1667
  • 31 Sikka S C, Bhasin S, Coy D C, Koyle M A, Swerdloff R S, Rajfer J. Effects of cyclosporine on the hypothalamic-pituitary-gonadal axis in the male rat: mechanism of action.  Endocrinology. 1988;  123 69-74
  • 32 Snyder P J, Peachey H, Hannoush P. et al . Effects of testosterone treatment on bone mineral density in men over 65 years of age.  J Clin Endocrinol Metab. 1999;  84 1966-1972
  • 33 Stempfle H U, Werner C, Echtler S. et al . Prevention of osteoporosis after cardiac transplantation.  Transplantation. 1999;  68 523-530
  • 34 Stempfle H U. Osteoporose nach Herztransplantation.  Dtsch Med Wochenschr. 1996;  121 1103-1107
  • 35 Williams J P, Mckenna M A, Thames A M, McDonald J M. Effects of cyclosporine on osteoclast activity: Inhibition of calcineurin activity with minimal effects on bone resorption and acid transport activity.  J Bone Miner Res. 2003;  18 451-457

Priv.-Doz. Dr. H. U. Stempfle

Abteilung Kardiologie, Medizinische Poliklinik Klinikum Innenstadt, Ludwig-Maximilians Universität München

Ziemssenstraße 1

80336 München

Phone: +49/89/51602316

Fax: +49/89/51604483

Email: stempfle@medinn.med.uni-muenchen.de