Zentralbl Gynakol 2004; 126(6): 373-377
DOI: 10.1055/s-2004-832385
Originalarbeit

© Georg Thieme Verlag Stuttgart · New York

Untersuchungen zur Regulation von hCG durch Kortisol (Prednisolon) in der Trophoblastzelle in vitro

Investigations on Regulation of hCG by Cortisol (Prednisolon) in Trophoblast Cells in VitroI. Höcker1 , D. U. Richter1 , V. Briese1 , I. Wiest2 , I. Mylonas2 , K. Friese2 , U. Jeschke2
  • 1Universität Rostock, Frauenklinik und Poliklinik, Rostock
  • 2Ludwig Maximilians Universität München, 1. Frauenklinik - Klinikum Innenstadt, München
Further Information

Publication History

Publication Date:
29 November 2004 (online)

Zusammenfassung

Fragestellung: Die Trophoblastzelle synthetisiert eine Reihe von Hormonen, wobei die hCG-Synthese eine herausragende Rolle spielt. Durch ihre besondere enzymatische Ausstattung kann sie die Reaktion Kortisol ↔ Kortison katalysieren. In-vitro-Stimulierungsversuche an isolierten Trophoblastzellen mit CRH, ACTH und Prednisolon zeigten, dass in Trophoblastzellen ein dem Hypophyse/Hypothalamus entsprechender Regelkreislauf existiert. In dieser Studie beschreiben wir den Einfluss von Kortisol (Prednisolon) auf die hCG-Produktion von Trophoblastzellen. Methode und Methodik: Die Trophoblastzellisolierung erfolgt nach grober Präparation des Plazentagewebes mittels mehrschrittiger DNAse I und Trypsinverdauung. Die gewonnene Zellsuspension wird auf die definierte Zellkonzentration von 1 × 106 Zellen/ml eingestellt und in Nährmedium kultiviert. Nach jeweils 8 Stunden erfolgt die Zugabe von Prednisolon. Nach jeweils 24 Stunden wird die hCG-Konzentration gemessen. Parallel werden die hCG-Werte einer nichtstimulierten Kultur bestimmt. Ergebnisse: Die Zugabe von Prednisolon (50 µg/ml) stimuliert die hCG-Konzentration zeitabhängig. Schlussfolgerung: Die Trophoblastzelle weist in vitro eine erhöhte hCG-Sekretion unter Prednisolonstimulierung auf. Erstmals konnte eine hCG-Stimulierung mit Prednisolon innerhalb der Trophoblastzelle in vitro demonstriert werden.

Abstract

Objective: Trophoblast cells synthesize a variety of hormones, in which hCG plays a major role. On the strength of special enzymes they are capable of catalyzing the reaction cortisol ↔ cortisone. In vitro experiments showed the influence on ACTH- and cortisol secretion by CRH, ACTH and prednisolon. In this study we describe the influence of cortisol (prednisolon) on hCG production of trophoblast cells in vitro. Material and methods: Trophoblast cells were prepared from human term placentae by standard trypsin-DNAse dispersion of villous tissue followed by a percoll gradient centrifugation step. After adjusting the cell suspension to a defined cell concentration of 1 × 106 cells/ml cells were cultivated. The addition of prednisolon followed every eight hours. The samples were collected after 24 hours for a total of 96 hours also from unstimulated cultures. Culture supernatants were assayed for hCG by enzyme-immunometric methods. Results: The addition of prednisolon (50 µg/ml) stimulates the concentration of hCG in a time-depending manner. Conclusions: The trophoblast cell shows an increase in the concentration of hCG after stimulation with cortisol. For the first time an influence of cortisol (prednisolon) on hCG production could be demonstrated in cultured trophoblast cells.

Literatur

  • 1 Albiston A L, Obeyesekere V R, Smith R E, Krozowski Z S. Cloning and tissue distribution of the human 11 beta-hydroxysteroid dehydrogenase type 2 enzyme.  Mol Cell Endocrinol. 1994;  105 R11-R17
  • 2 Baggia S, Albrecht E D, Babischkin J S, Pepe G J. Interconversion of cortisol and cortisone in baboon trophoblast and decidua cells in culture.  Endocrinology. 1990;  127 1735-1741
  • 3 Baggia S, Albrecht E D, Pepe G J. Regulation of 11 beta-hydroxysteroid dehydrogenase activity in the baboon placenta by estrogen.  Endocrinology. 1990;  126 2742-2748
  • 4 Brown R W, Chapman K E, Edwards C R, Seckl J R. Human placental 11 beta-hydroxysteroid dehydrogenase: evidence for and partial purification of a distinct NAD-dependent isoform.  Endocrinology. 1993;  132 2614-2621
  • 5 Gancel A, Courtois H, Doucet J, Schrub J C. [Multiple fetal losses caused by a circulating anticoagulant. Correction with a combination of aspirin and corticotherapy].  Presse Med. 1986;  15 1426-1427
  • 6 Gurka G, Rocklin R E. Reproductive immunology.  JAMA. 1987;  258 2983-2987
  • 7 Hall C S, Giroud C J. Activity of human placental sulfatase and 11-hydroxysteroid dehydrogenase with respect to steroids of the pregn-4-ene C-21-yl sulfate series.  Can J Biochem. 1971;  49 1384-1387
  • 8 Hocker I, Briese V, Richter D U, Mylonas I, Friese K, Jeschke U. [Investigations on regulation of CRH, ACTH and cortisol in trophoblast cells in vitro].  Zentralbl Gynakol. 2003;  125 409-414
  • 9 Karalis K, Goodwin G, Majzoub J A. Cortisol blockade of progesterone: a possible molecular mechanism involved in the initiation of human labor.  Nat Med. 1996;  2 556-560
  • 10 Karalis K, Majzoub J A. Regulation of placental corticotropin-releasing hormone by steroids. Possible implications in labor initiation.  Ann N Y Acad Sci. 1995;  771 551-555
  • 11 Kliman H J, Nestler J E, Sermasi E, Sanger J M, Strauss J F. Purification, characterization, and in vitro differentiation of cytotrophoblasts from human term placentae.  Endocrinology. 1986;  118 1567-1582
  • 12 Kondoh Y. Immunosuppressive effect of HCG and HPL in pregnancy.  Acta Obstet Gynaecol Jpn. 1976;  23 115-122
  • 13 Li K X, Smith R E, Krozowski Z S. Cloning and expression of a novel tissue specific 17beta-hydroxysteroid dehydrogenase.  Endocr Res. 1998;  24 663-667
  • 14 Majumdar S, Bapna B C, Mapa M K, Gupta A N, Devi P K, Subrahmanyam D. Pregnancy specific proteins: suppression of in vitro blastogenic response to mitogen by these proteins.  Int J Fertil. 1982;  27 66-69
  • 15 Morse J H. The effect of human chorionic gonadotropin and placental lactogen on lymphocyte transformation in vitro.  Scand J Immunol. 1976;  5 779-787
  • 16 Murphy B E. Chorionic membrane as an extra-adrenal source of foetal cortisol in human amniotic fluid.  Nature. 1977;  266 179-181
  • 17 Pepe G J, Albrecht E D. Comparison of cortisol-cortisone interconversion in vitro by the human and baboon placenta.  Steroids. 1984;  44 229-240
  • 18 Pepe G J, Albrecht E D. Fetal regulation of transplacental cortisol-cortisone metabolism in the baboon.  Endocrinology. 1987;  120 2529-2533
  • 19 Pepe G J, Albrecht E D. Actions of placental and fetal adrenal steroid hormones in primate pregnancy.  Endocr Rev. 1995;  16 608-648
  • 20 Quenby S, Farquharson R, Young M, Vince G. Successful pregnancy outcome following 19 consecutive miscarriages: case report.  Hum Reprod. 2003;  18 2562-2564
  • 21 Sarkar S, Tsai S W, Nguyen T T, Plevyak M, Padbury J F, Rubin L P. Inhibition of placental 11beta-hydroxysteroid dehydrogenase type 2 by catecholamines via alpha-adrenergic signaling.  Am J Physiol Regul Integr Comp Physiol. 2001;  281 R1966-R1974
  • 22 Seckl J R. 11 beta-hydroxysteroid dehydrogenase isoforms and their implications for blood pressure regulation.  Eur J Clin Invest. 1993;  23 589-601
  • 23 Slikker W, Althaus Z R, Rowland J M, Hill D E, Hendrickx A G. Comparison of the transplacental pharmacokinetics of cortisol and triamcinolone acetonide in the rhesus monkey.  J Pharmacol Exp Ther. 1982;  223 368-374
  • 24 Steck T. [Immunotherapy for prevention of abortion and for improving implantation in extracorporeal fertilization].  Zentralbl Gynakol. 2001;  123 357-360
  • 25 Stewart P M, Mason J I. Cortisol to cortisone: glucocorticoid to mineralocorticoid.  Steroids. 1995;  60 143-146
  • 26 Stewart P M, Rogerson F M, Mason J I. Type 2 11 beta-hydroxysteroid dehydrogenase messenger ribonucleic acid and activity in human placenta and fetal membranes: its relationship to birth weight and putative role in fetal adrenal steroidogenesis.  J Clin Endocrinol Metab. 1995;  80 885-890
  • 27 Stewart P M, Whorwood C B, Mason J I. Type 2 11 beta-hydroxysteroid dehydrogenase in foetal and adult life.  J Steroid Biochem Mol Biol. 1995;  55 465-471
  • 28 Stites D P, Bugbee S, Siiteri P K. Differential actions of progesterone and cortisol on lymphocyte and monocyte interaction during lymphocyte activation - relevance to immunosuppression in pregnancy.  J Reprod Immunol. 1983;  5 215-228
  • 29 Stites D P, Siiteri P K. Steroids as immunosuppressants in pregnancy.  Immunol Rev. 1983;  75 117-138
  • 30 Sun K, Yang K, Challis J R. Differential expression of 11 beta-hydroxysteroid dehydrogenase types 1 and 2 in human placenta and fetal membranes.  J Clin Endocrinol Metab. 1997;  82 300-305
  • 31 Sun K, Yang K, Challis J R. Differential regulation of 11 beta-hydroxysteroid dehydrogenase type 1 and 2 by nitric oxide in cultured human placental trophoblast and chorionic cell preparation.  Endocrinology. 1997;  138 4912-4920
  • 32 Sun K, Yang K, Challis J R. Regulation of 11beta-hydroxysteroid dehydrogenase type 2 by progesterone, estrogen, and the cyclic adenosine 5′-monophosphate pathway in cultured human placental and chorionic trophoblasts.  Biol Reprod. 1998;  58 1379-1384
  • 33 Yoshida A, Morozumi K, Suganuma T, Shinmura I, Fujinami T, Aoki K, Yagami Y. [Prednisolone and aspirin combination therapy in habitual abortion with autoantibodies].  Ryumachi. 1988;  28 367-372

PD Dr. Udo Jeschke

I. Frauenklinik - Klinikum Innenstadt · Ludwig Maximilians Universität München

Maistraße 11

80337 München

Deutschland

Phone: ++49-89/51 60-42 66

Fax: ++49-89/51 60-49 16

Email: udo.jeschke@med.uni-muenchen.de

    >