Semin Respir Crit Care Med 2005; 26(2): 211-220
DOI: 10.1055/s-2005-869540
Copyright © 2005 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

New Concepts in the Radiological Assessment of COPD

Harvey O. Coxson1 , Robert M. Rogers2
  • 1Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
  • 2Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
Further Information

Publication History

Publication Date:
27 April 2005 (online)

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a complex genetic disorder in which environmental factors, such as tobacco smoke, interact with genetic susceptibility to cause disease. Airway obstruction in COPD is due to an exaggerated inflammatory response that ultimately destroys the lung parenchyma (emphysema) and increases airway resistance by remodeling the airway wall. Until recently, assessment of these disease processes required the examination of resected tissue. However, computed tomography (CT) now allows researchers to measure the structure of the lung parenchyma and airway wall without having to remove the tissue. This review describes some of the new CT techniques for quantitative assessment of lung structure. These techniques are extremely important to study the pathogenesis of COPD as well as differentiate patients with predominantly emphysema disease from those with airway wall remodeling, and to assess the effects of therapeutic interventions.

REFERENCES

  • 1 American Thoracic Society . Chronic bronchitis, asthma and pulmonary emphysema: a statement by the Committee on Diagnostic Standards for Nontuberculous Respiratory Diseases.  ARRD. 1962;  85 762-768
  • 2 American Thoracic Society . Standards for the diagnosis and care of patients with chronic obstructive pulmonary disease (COPD) and asthma.  Am Rev Respir Dis. 1987;  136 225-243
  • 3 Hogg J C, Chu F, Utokaparch S et al.. The nature of small-airway obstruction in chronic obstructive pulmonary disease.  N Engl J Med. 2004;  350 2645-2653
  • 4 Thurlbeck W M, Dunnill M S, Hartung W, Heard B E, Heppleston A G, Ryder R C. A comparison of three methods of measuring emphysema.  Hum Pathol. 1970;  1 215-226
  • 5 Thurlbeck W M, Henderson J A, Fraser R G, Bates D V. Chronic obstructive lung disease: a comparison between clinical, roentgenologic, functional and morphologic criteria in chronic bronchitis, emphysema, asthma and bronchiectasis.  Medicine. 1970;  49 81-145
  • 6 Thurlbeck W M, Müller N L. Emphysema: definition, imaging, and quantification.  AJR Am J Roentgenol. 1994;  163 1017-1025
  • 7 Miller R R, Müller N L, Vedal S, Morrison N J, Staples C A. Limitations of computed tomography in the assessment of emphysema.  ARRD. 1989;  139 980-983
  • 8 Kuwano K, Matsuba K, Ikeda T et al.. The diagnosis of mild emphysema: correlation of computed tomography and pathology scores.  ARRD. 1997;  141 169-178
  • 9 Hruban R H, Meziane M A, Zerhouni E A et al.. High-resolution computed tomography of inflation-fixed lungs: pathologic-radiologic correlation of centrilobular emphysema.  ARRD. 1987;  136 935-940
  • 10 Gevenois P A, de Maertelaer V, De Vuyst P, Zanen J, Yernault J C. Comparison of computed density and macroscopic morphometry in pulmonary emphysema.  AJRCCM. 1995;  152 653-657
  • 11 Müller N L, Staples C A, Miller R R, Abboud R T. “Density mask”: an objective method to quantitate emphysema using computed tomography.  Chest. 1988;  94 782-787
  • 12 Coxson H O, Rogers R M, Whittall K P et al.. A quantification of the lung surface area in emphysema using computed tomography.  AJRCCM. 1999;  159 851-856
  • 13 Gevenois P A, De Vuyst P, de Maertelaer V et al.. Comparison of computed density and microscopic morphometry in pulmonary emphysema.  Am J Respir Crit Care Med. 1996;  154 187-192
  • 14 Gould G A, MacNee W, McLean A et al.. CT measurements of lung density in life can quantitate distal airspace enlargement: an essential defining feature of human emphysema.  ARRD. 1988;  137 380-392
  • 15 Mishima M, Hirai T, Itoh H et al.. Complexity of terminal airspace geometry assessed by lung computed tomography in normal subjects and patients with chronic obstructive pulmonary disease.  Proc Natl Acad Sci U S A. 1999;  96 8829-8834
  • 16 Coxson H O, Whittall K P, Nakano Y et al.. Selection of patients for lung volume reduction surgery using a power law analysis of the computed tomographic scan.  Thorax. 2003;  58 510-514
  • 17 Uppaluri R, Mitsa T, Sonka M, Hoffman E A, McLennan G. Quantification of pulmonary emphysema from lung computed tomography images.  Am J Respir Crit Care Med. 1997;  156 248-254
  • 18 Rogers R M, Coxson H O, Sciurba F C, Keenan R J, Whittall K P, Hogg J C. Preoperative severity of emphysema predictive of improvement after lung volume reduction surgery: use of CT morphometry.  Chest. 2000;  118 1240-1247
  • 19 Flaherty K R, Kazerooni E A, Curtis J L et al.. Short-term and long-term outcomes after bilateral lung volume reduction surgery: prediction by quantitative CT.  Chest. 2001;  119 1337-1346
  • 20 Nakano Y, Coxson H O, Bosan S et al.. Core to rind distribution of severe emphysema predicts outcome of lung volume reduction surgery.  Am J Respir Crit Care Med. 2001;  164 2195-2199
  • 21 Dirksen A. A randomized clinical trial of α-1 antitrypsin augmentation therapy.  AJRCCM. 1999;  160 1468-1472
  • 22 Mao J T, Goldin J G, Dermand J et al.. A pilot study of all-transretinoic acid for the treatment of human emphysema.  Am J Respir Crit Care Med. 2002;  165 718-723
  • 23 Leader J K, Zheng B, Rogers R M et al.. Automated lung segmentation in x-ray computed tomography: development and evaluation of a heuristic threshold-based scheme.  Acad Radiol. 2003;  10 1224-1236
  • 24 Hoffman E A, Coxson H O, Guo J, Wong J, McLennan G, Hogg J C. Validation of quantitative computed tomography for assessment of lung destruction in COPD [abstract].  Am J Respir Crit Care Med. 2003;  167(Suppl) A81
  • 25 Nakano Y, Wong J C, Sato A et al.. Comparison of quantitative computed tomography for assessment of pulmonary emphysema [abstract].  Am J Respir Crit Care Med. 2004;  169(Supplement) A881
  • 26 Gevenois P A, Scillia P, de Maertelaer V, Michils A, De Vuyst P, Yernault J C. The effects of age, sex, lung size, and hyperinflation on CT lung densitometry.  AJR Am J Roentgenol. 1996;  167 1169-1173
  • 27 Stoel B C, Bakker M E, Stolk J et al.. Comparison of the sensitivities of five different computed tomography scanners for the assessment of the progression of pulmonary emphysema: a phantom study.  Invest Radiol. 2004;  39 1-7
  • 28 Stoel B C, Vrooman H A, Stolk J, Reiber J H. Sources of error in lung densitometry with CT.  Invest Radiol. 1999;  34 303-309
  • 29 Boedeker K L, McNitt-Gray M F, Rogers S R et al.. Emphysema: effect of reconstruction algorithm on CT imaging measures.  Radiology. 2004;  232 295-301
  • 30 Seneterre E, Paganin F, Bruel J M, Michel F B, Bousquet J. Measurement of the internal size of bronchi using high resolution computed tomography (HRCT).  Eur Respir J. 1994;  7 596-600
  • 31 Okazawa M, Muller N L, McNamara A E, Child S, Verburgt L, Pare P D. Human airway narrowing measured using high-resolution computed tomography.  AJRCCM. 1996;  154 1557-1562
  • 32 Webb W R, Gamsu G, Wall S D, Cann C E, Proctor E. CT of a bronchial phantom: factors affecting appearance and size measurements.  Invest Radiol. 1984;  19 394-398
  • 33 McNamara A E, Muller N L, Okazawa M, Arntorp J, Wiggs B R, Pare P D. Airway narrowing in excised canine lung measured by high-resolution computed tomography.  JAP. 1992;  73 307-316
  • 34 Bankier A A, Fleischmann D, Mallek R et al.. Bronchial wall thickness: appropriate window settings for thin-section CT and radiologic-anatomic correlation.  Radiology. 1996;  199 831-836
  • 35 McNitt-Gray M F, Goldin J G, Johnson T D, Tashkin D P, Aberle D R. Development and testing of image-processing methods for the quantitative assessment of airway hyperresponsiveness from high-resolution CT images.  J Comput Assist Tomogr. 1997;  21 939-947
  • 36 King G G, Muller N L, Whittall K P, Xiang Q S, Pare P D. An analysis algorithm for measuring airway lumen and wall areas from high-resolution computed tomographic data.  AJRCCM. 2000;  161 574-580
  • 37 Nakano Y, Whittall K P, Kalloger S E, Coxson H O, Pare P D. Development and validation of human airway analysis algorithm using multidetector row CT.  Proceedings of SPIE. 2002;  4683 460-469
  • 38 Reinhardt J M, D'Souza N D, Hoffman E A. Accurate measurement of intrathoracic airways.  IEEE Trans Med Imaging. 1997;  16 820-827
  • 39 Wood S A, Hoford J D, Hoffman E A, Zerhouni E, Mitzner W. A method for measurement of cross-sectional area, segment length, and branching angle of airway tree structures in situ.  Comput Med Imaging Graph. 1995;  19 145-152
  • 40 Wood S A, Zerhouni E A, Hoford J D, Hoffman E A, Mitzner W. Measurement of three-dimensional lung tree structures by using computed tomography.  J Appl Physiol. 1995;  79 1687-1697
  • 41 Aykac D, Hoffman E A, McLennan G, Reinhardt J M. Segmentation and analysis of the human airway tree from three-dimensional x-ray CT images.  IEEE Trans Med Imaging. 2003;  22 940-950
  • 42 Park W, Hoffman E A, Sonka M. Segmentation of intrathoracic airway trees: a fuzzy logic approach.  IEEE Trans Med Imaging. 1998;  17 489-497
  • 43 Nakano Y, Muro S, Sakai H et al.. Computed tomographic measurements of airway dimensions and emphysema in smokers: correlation with lung function.  AJRCCM. 2000;  162 1102-1108

Harvey O CoxsonPh.D. 

Department of Radiology, Vancouver General Hospital

855 W. 12th Ave., Vancouver, BC, Canada V5Z 1M9

Email: hcoxson@vanhosp.bc.ca

    >