Plant Biol (Stuttg) 2006; 8(1): 64-72
DOI: 10.1055/s-2005-872892
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Cadmium Hyperaccumulation and Reproductive Traits in Natural Thlaspi caerulescens Populations

N. Basic1 , C. Keller2 , 3 , P. Fontanillas4 , P. Vittoz1 , G. Besnard1 , N. Galland1
  • 1Department of Ecology and Evolution, University of Lausanne, Biology Building, 1015 Lausanne, Switzerland
  • 2ENAC-ISTE-Laboratory of Soil Science, Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland
  • 3Present address: CEREGE, Europôle Méditerranéen de l’Arbois, Université Aix-Marseille III, BP 80, 13545 Aix-en-Provence, Cedex 4, France
  • 4Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
Further Information

Publication History

Received: March 24, 2005

Accepted: August 31, 2005

Publication Date:
08 November 2005 (online)

Abstract

During the last decade, the metal hyperaccumulating plants have attracted considerable attention because of their potential use in decontamination of heavy metal contaminated soils. However, in most species, little is known regarding the function, the ecological and the evolutionary significances of hyperaccumulation. In our study, we investigated the parameters influencing the Cd concentration in plants as well as the biological implications of Cd hyperaccumulation in nine natural populations of Thlaspi caerulescens. First, we showed that Cd concentration in the plant was positively correlated with plant Zn, Fe, and Cu concentrations. This suggested that the physiological and/or molecular mechanisms for uptake, transport and/or accumulation of these four heavy metals interact with each other. Second, we specified a measure of Cd hyperaccumulation capacity by populations and showed that T. caerulescens plants originating from populations with high Cd hyperaccumulation capacity had better growth, by developing more and bigger leaves, taller stems, and produced more fruits and heavier seeds. These results suggest a tolerance/disposal role of Cd hyperaccumulation in this species.

References

  • 1 Antonovics J., Bradshaw A. D., Turner R. G.. Heavy metal tolerance in plants.  Advances in Ecological Research. (1971);  7 1-85
  • 2 Assunção A. G. L., Bokum W. M., Nelissen H. J. M., Vooijs R., Schat H., Ernst W. H. O.. Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types.  New Phytologist. (2003);  159 411-419
  • 3 Atteia O., Thélin Ph, Pfeifer H. R., Dubois J. P., Hunziker J. C.. A search for the origin of cadmium in the soil of Swiss Jura.  Geoderma. (1995);  68 149-172
  • 4 Baker A. J. M.. Accumulators and excluders - strategies in the response of plants to heavy metals.  Journal of Plant Nutrition. (1981);  3 643-654
  • 5 Baker A. J. M., Brooks R. R.. Terrestrial higher plants which hyperaccumulate metallic elements - a review of their distribution, ecology and phytochemistry.  Biorecovery. (1989);  1 81-126
  • 6 Baker A. J. M., Reeves R. D., Hajar A. S. M.. Heavy metal accumulation and tolerance in British populations of metallophyte Thlaspi caerulescens J. and C. Presl (Brassicaceae).  New Phytologist. (1994);  127 61-68
  • 7 Baker A. J. M., Walker P. L.. Ecophysiology of metal uptake by tolerant plants. Shaw, A. J., ed. Heavy Metal Tolerance in Plants: Evolutionary Aspects. Boca Raton, FL, USA; CRC Press (1989): 155-177
  • 8 Benitez N.. Cadmium speciation and phyto-availability in soils of the Swiss Jura: hypothesis about its dynamics. PhD thesis, EPFL, Switzerland, No. 2066. (1999)
  • 9 Blaylock M. J., Huang J. W.. Phytoextraction of metals. Raskin, I. and Ensley, B. D., eds. Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment. John Wiley and Sons Inc. (2000): 53-70
  • 10 Boyd R. S.. Ecology of metal hyperaccumulation.  New Phytologist. (2004);  162 563-567
  • 11 Boyd R. S., Jaffré T.. Phytoenrichment of soil Ni content by Sebertia acuminata in New Caledonia and the concept of elemental allelopathy.  South African Journal of Science. (2002);  97 535-538
  • 12 Boyd R. S., Martens S. N.. The raison d etre for metal hyperaccumulation by plants. Baker, A. J. M., Proctor, J., and Reeves, R. D., eds. The Vegetation of Ultramafic (Serpentine) Soils. Andover, GB; Intercept (1992): 279-289
  • 13 Brooks R. R.. General introduction. Brooks, R. R., ed. Plants that Hyperaccumulate Heavy Metals. Cambridge; CAB International (1998)
  • 14 Brown S., Chaney R., Angle J., Baker A.. Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc- and cadmium-contamined soil.  Journal of Environmental Quality. (1994);  23 1151-1157
  • 15 Chaney R. L.. Plant uptake of inorganic waste constituents. Parr, J. F., Marsh, P. B., and Kla, J. S., eds. Land Treatment of Hazardous Waste. Park Ridge, NJ; Noyes Data Corp. (1983): 50-76
  • 16 Cosio C.. Phytoextraction of heavy metal by hyperaccumulating and non hyperaccumulating plants: comparison of cadmium uptake and storage mechanisms in the plants. PhD thesis, ENAC, EPFL, Switzerland, No. 2937. (2004)
  • 17 Cosio C., Martinoia E., Keller C.. Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level.  Plant Physiology. (2004);  134 716-725
  • 18 Escarré J., Lefèbvre C., Gruber W., Leblanc M., Lepart J., Rivière Y., Delay B.. Zinc and cadmium hyperaccumulation by Thlaspi caerulescens J. et C. Presl. from metalliferous and nonmetalliferous sites in the Mediterranean area: implications for phyto-remediation.  New Phytologist. (2000);  145 429-437
  • 19 Evangelou M. W. H., Daghan H., Schaeffer A.. The influence of humic acids on the phytoextraction of cadmium from soil.  Chemosphere. (2004);  57 207-213
  • 20 FAC (Eidgenössische Forschungsanstalt für Agrikulturchemie und Umwelthygiene) .Methoden für die Bodenuntersuchungen. Bern-Liebefeld, Switzerland; Schriftenreihe der FAC (1989)
  • 21 FAL (Eidgenössische Forschungsanstalt für Agrarökologie und Landbau) .Manuel pour l'analyse des sols, des plantes et de l'eau de percolation lysimétrique. Zürich-Reckenholz, Switzerland; Les Cahiers de la FAL (1998)
  • 22 Ihaka R., Gentleman R.. R: A language for data analysis and graphics.  Journal of Computational and Graphical Statistics. (1996);  5 299-314
  • 23 Jiang R. F., Ma D. Y., Zhao F. J., McGrath S. P.. Cadmium hyperaccumulation protects Thlaspi caerulescens from leaf feeding damage by thrips (Frankliniella occidentalis). .  New Phytologist. (2005);  167 805-814
  • 24 Keller C., Hammer D., Kayser H., Richner W., Brodbeck M., Sennhauser M.. Root development and heavy metal phytoextraction efficiency: comparaison of different plant species in the field.  Plant and Soil. (2003);  249 67-81
  • 25 Liebig T., Dubois J.-P.. Speciation and bioavailability of some soils of the Swiss Jura. In Extended Abstracts of the 4th International Conference on the Biochemistry of Trace Elements, Berkeley, CA, 23 - 26 June 1997. (1997): 111-112
  • 26 Lombi E., Tearall K. L., Howarth J. R., Zhao F. J., Hawkesford M. J., McGrath S. P.. Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens.  Plant Physiology. (2002);  128 1359-1367
  • 27 Lombi E., Zhao F. J., Dunham S. J., McGrath S. P.. Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense.  New Phytologist. (2000);  145 11-20
  • 28 Lombi E., Zhao F. J., McGrath S. P., Young S. D., Sacchi G. A.. Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype.  New Phytologist. (2001);  149 53-60
  • 29 Marschner H.. Mineral Nutrition of Higher Plants. New York; Academic Press, Hartcourt Brace and Company (1995)
  • 30 Meerts P., Van Isacker N.. Heavy metal tolerance and accumulation in metallicolous and non-metallicolous populations of Thlaspi caerulescens from continental Europe.  Plant Ecology. (1997);  133 221-231
  • 31 Molitor M., Dechamps C., Gruber W., Meerts P.. Thlaspi caerulescens on nonmetalliferous soil in Luxembourg: ecological niche and genetic variation in mineral element composition.  New Phytologist. (2005);  165 503-512
  • 32 Noret N., Meerts P., Tolra R., Poschenrieder C., Barcelo J., Escarre J.. Palatability of Thlaspi caerulescens for snails: influence of zinc and glucosinolates.  New Phytologist. (2005);  165 763-772
  • 33 OIS .Swiss Ordinance Relating to Impacts on the Soils. Switzerland, 1st July 1998, SR 814.12. (1998)
  • 34 Pollard A., Powell K., Harper F., Smith J.. The genetic basis of metal hyperaccumulation in plants.  Critical Reviews in Plant Sciences. (2002);  21 539-566
  • 35 Shaw B. P., Sahu S. K., Mishra R. K.. Heavy metal induced oxidative damage in terrestrial plants. Prasad, M. N. V., ed. Heavy Metal Stress in Plants. Berlin, Heidelberg; Springer (2004): 84-126
  • 36 Reeves R. D., Brooks R. R.. European species of Thlaspi L. (Cruciferae) as indicators of nickel and zinc.  Journal of Geochemical Exploration. (1983);  18 275-283
  • 37 Roosens N., Verbruggen N., Meerts P., Ximénez-Embún P., Smith J. A. C.. Natural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from western Europe.  Plant, Cell and Environment. (2003);  26 1657-1672
  • 38 Sanita di Toppi L., Gabbrielli R.. Response to cadmium in higher plants.  Environmental and Experimental Botany. (1999);  41 105-130
  • 39 Severne B. C.. Nickel accumulation by Hybanthus floribundus.  Nature. (1974);  248 807-808
  • 40 Vert G., Grotz N., Dedaldechamp F., Gaymard F., Guerinot M. L., Briata J. F., Curie C.. IRT1, an Arabidopsis transporter essential for iron uptake from the soil for plant growth.  Plant Cell. (2002);  14 1223-1233
  • 41 Welch R. M., Norvell W. A.. Mechanisms of cadmium uptake, translocation and deposition in plants. McLaughlin, M. J. and Singh, A., eds. Cadmium in Soils and Plants. Dordrecht, The Netherlands; Kluwer Academic Publishers (1999): 125-150
  • 42 Welten M., Sutter H. C. R.. Atlas de la Distribution des Ptéridophytes et des Phanérogames de la Suisse. Basel; Birkhäuser Verlag (1982)
  • 43 Whiting S. N., Neumann P. M., Baker A. J. M.. Nickel and zinc hyperaccumulation by Alyssum murale and Thlaspi caerulescens (Brassicaceae) do not enhance survival and whole-plant growth under drought stress.  Plant, Cell and Environment. (2003);  26 351-360
  • 44 Wilson J. B., Agnew A. D. Q.. Positive-feedback switches in plant communities.  Advances in Ecological Research. (1992);  23 263-336
  • 45 Zha H. G., Jiang R. F., Zhao F. J., Vooijs R., Schat H., Barker J. H. A., McGrath S. P.. Co-segregation analysis of cadmium and zinc accumulation in Thlaspi caerulescens interecotypic crosses.  New Phytologist. (2004);  163 299-312
  • 46 Zhao F. J., Lombi E., McGrath S. P.. Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens.  Plant and Soil. (2003);  249 37-43
  • 47 Zimmermann N. E., Kienast F.. Predictive mapping of alpine grasslands in Switzerland: Species versus community approach.  Journal of Vegetation Science. (1999);  10 469-482

N. Basic

Department of Ecology and Evolution
University of Lausanne

Biology Building

1015 Lausanne

Switzerland

Email: nevena.basic@unil.ch

Editor: H. de Kroon

    >