Plant Biol (Stuttg) 2006; 8(6): 849-860
DOI: 10.1055/s-2006-924474
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Development of Microalgae Communities in the Phytotelmata of Allochthonous Populations of Sarracenia purpurea (Sarraceniaceae)

C. Gebühr1 , E. Pohlon1 , A. R. Schmidt1 , [2] , K. Küsel1
  • 1Limnology Research Group, Institute of Ecology, Friedrich Schiller University, Carl-Zeiss-Promenade 10, 07745 Jena, Germany
Further Information

Publication History

Received: December 1, 2005

Accepted: June 18, 2006

Publication Date:
25 October 2006 (online)

Abstract

The phytotelmata of the North American pitcher plant Sarracenia purpurea are colonised by a great variety of aquatic organisms and, thus, provide an ideal model to study trophic interactions in small freshwater ecosystems. Although algae are discussed as a potential food source for predators, little is known about the structure of algae coenoses in pitchers of S. purpurea. This study aims to elucidate temporal shifts in the algae community structure in pitchers of an allochthonous population of S. purpurea in Saxony, Germany. A total of 78 algae taxa was found in the pitchers. Mean algae abundances in new and old pitchers were similar (2.6 × 105 and 2.3 × 105 algae ml-1, respectively). Taxa from the orders Chlamydomonadales, Chlorococcales, and Ochromonadales were the primary colonisers. With increasing age of the pitchers the filamentous green algae from the order Klebsormidiales became more abundant. In contrast, pennate diatoms dominated the algae coenoses in the fen. Algae community structure in vase-shaped 50 ml Greiner tubes was similar to those of natural pitchers. Differences in the temporal patterns of algae coenoses in individual pitchers suggested a colonisation of the pitchers by algae via trapped insects, air and rain water rather than via the surrounding fen. Biomass of algae approximated 0.3 mg C ml-1, which corresponds to 82.8 % of the living biomass (bacteria, heterotrophic nanoflagellates, algae, protozoans and rotifers). Rotifers were abundant in new pitchers; nematodes and mites were seldom found in all pitchers. A similar qualitative and quantitative composition of the aquatic biocoenoses was observed in pitchers of another allochthonous S. purpurea population growing in Blekinge, Sweden. Biomass of algae represented nearly one quarter of the total organic matter content in the pitchers. Thus, nitrogen and phosphorus compounds present in the algae biomass might be used by the carnivorous S. purpurea plant as additional food source in allochthonous populations in Europe lacking top predators.

References

  • 1 Adams R. M., Smith G. W.. An S.E.M. survey of the five carnivorous pitcher plant genera.  American Journal of Botany. (1977);  64 265-272
  • 2 Addicott J. F.. Predation and prey community structure: an experimental study of the effect of mosquito larvae on the protozoan communities of pitcher plants.  Ecology. (1974);  55 475-492
  • 3 Almborn O.. Flugtrumpet: Sarracenia purpurea, naturiliserat i Sverige.  Svensk Botanisk Tidskrift. (1983);  77 209-216
  • 4 Bledzki L. A., Ellison A. M.. Population growth and production of Habrotrocha rosa Donner (Rotifera: Bdelloidea) and its contribution to the nutrient supply of its host, the northern pitcher plant, Sarracenia purpurea L. (Sarraceniaceae).  Hydrobiologia. (1998);  385 193-200
  • 5 Boldyreff E. B.. A study of the digestive secretion of Sarracenia purpurea.  Papers of the Michigan Academy of Sciences. (1928);  9 55-64
  • 6 Bradshaw W. E., Creelman R. A.. Mutualism between the carnivorous purple pitcher plant (Sarracenia purpurea) and its inhabitants.  American Midland Naturalist. (1984);  112 294-304
  • 7 Bratbak G., Dundas I.. Bacterial dry matter content and biomass estimations.  Applied and Environmental Microbiology. (1984);  48 755-757
  • 8 Bratbak G., Thingstad T. F.. Phytoplankton-bacteria interaction: an apparent paradox? Analysis of a model system with both competition and commensalisms.  Marine Ecology Progress Series. (1985);  25 23-30
  • 9 Buckley H. L., Miller T., Ellison A. M., Gotelli N. J.. Reverse latitudinal trends in species richness of pitcher-plant food webs.  Ecology Letters. (2003);  6 825-829
  • 10 Cameron C. J., Donald G. L., Paterson C. G.. Oxygen-fauna relationships in the pitcher plant Sarracenia purpurea L. with reference to the chironomid Metriocnemus knabi Coq.  Canadian Journal of Zoology. (1977);  55 2018-2023
  • 11 Chapin C. T., Pastor J.. Nutrient limitations in the northern pitcher plant Sarracenia purpurea.  Canadian Journal of Botany. (1995);  73 728-734
  • 12 Cochran-Stafira D. L., von Ende C. N.. Integrating bacteria into food webs: studies with Sarracenia purpurea inquilines.  Ecology. (1998);  79 880-898
  • 13 Ellison A. M., Gotelli N. J.. Nitrogen availability alters the expression of carnivory in the northern pitcher plant, Sarracenia purpurea.  Proceedings of the National Academy of Sciences of the USA. (2002);  99 4409-4412
  • 14 Ettl H.. Süsswasserflora von Mitteleuropa. Vol. 9: Chlorophyta I. Stuttgart; Gustav Fischer Verlag (1983)
  • 15 Ettl H., Gärtner G.. Süsswasserflora von Mitteleuropa. Vol. 10: Chlorophyta II. Jena; Gustav Fischer Verlag (1988)
  • 16 Fish D., Hall D. W.. Succession and stratification of aquatic insects inhabiting the leaves of the insectivorous pitcher plant Sarracenia purpurea. .  American Midland Naturalist. (1978);  99 172-183
  • 17 Förster K.. Das Phytoplankton des Süßwassers. Vol. 8, part 1: Conjugatophyceae. Stuttgart; Schweitzerbart'sche Verlagsbuchhandlung (1982)
  • 18 Fott B.. Das Phytoplankton des Süßwassers. Vol. 3: Cryptophyceae, Chloromonadophyceae, Dinophyceae. Stuttgart; Schweitzerbart'sche Verlagsbuchhandlung (1968)
  • 19 Fürsch H.. Sarracenia purpurea im Bayerischen Wald.  Berichte der Bayerischen Botanischen Gesellschaft zur Erforschung der heimischen Flora. (2001);  71 169-170
  • 20 Gadkari D.. Influence of herbicides Goltix and Sencor on nitrification.  Zentralblatt für Mikrobiologie. (1984);  139 623-631
  • 21 Habib O. A., Tippett R., Murphy K. J.. Seasonal changes in phytoplankton community structure in relation to physico-chemical factors in Loch Lomond, Scotland.  Hydrobiologia. (1997);  350 63-79
  • 22 Heard S. B.. Pitcher plant midges and mosquitoes: a processing chain commensalism.  Ecology. (1994);  75 1647-1660
  • 23 Hegner R. W.. The protozoa of the pitcher plant Sarracenia purpurea. .  Biological Bulletin. (1926);  50 271-276
  • 24 Huber-Pestalozzi G.. Das Phytoplankton des Süßwassers. Vol. 1: Allgemeiner Teil, Blaualgen, Bakterien, Pilze. Stuttgart; Schweitzerbart'sche Verlagsbuchhandlung (1938)
  • 25 Hustedt F.. Die Süsswasserflora Mitteleuropas. Vol. 10: Bacillariophyta (Diatomeae). Jena; Gustav Fischer Verlag (1930)
  • 26 John D. M., Whitton B. A., Brook A. J.. The Freshwater Algal Flora of the British Isles. An identification guide to freshwater and terrestrial algae. Cambridge; University Press (2002)
  • 27 Jones R. I.. Mixotrophy in planktonic protists as a spectrum of nutritional strategies.  Marine Microbial Food Webs. (1994);  8 87-96
  • 28 Jones R. I.. Mixotrophy in planktonic protists: an overview.  Freshwater Biology. (2000);  45 219-226
  • 29 Juniper B. E., Robins R. J., Joel D. M.. The Carnivorous Plants. London; Academic Press (1989)
  • 30 Kneitel J. M., Miller T. E.. Resource and top-predator regulation in the pitcher plant (Sarracenia purpurea) inquiline community.  Ecology. (2002);  83 680-688
  • 31 Komarèk J., Fott B.. Das Phytoplankton des Süßwassers. Vol. 7, part 1: Chlorophyceae. Stuttgart; Schweitzerbart'sche Verlagsbuchhandlung (1983)
  • 32 Krammer K., Lange-Bertalot H.. Süsswasserflora von Mitteleuropa. Vol. 2, part 1: Naviculaceae. Stuttgart; Gustav Fischer Verlag (1986)
  • 33 Krammer K., Lange-Bertalot H.. Süsswasserflora von Mitteleuropa. Vol. 2, part 2: Bacillariaceae, Epithemiaceae, Surirellaceae. Stuttgart; Gustav Fischer Verlag (1988)
  • 34 Krammer K., Lange-Bertalot H.. Süsswasserflora von Mitteleuropa. Vol. 2, part 3: Centrales, Fragilariaceae, Eunotiaceae. Stuttgart; Gustav Fischer Verlag (1991)
  • 35 Kurtis Trzcinski M., Walde S. J., Taylor P. D.. Colonisation of pitcher plant leaves at several spatial scales.  Ecological Entomology. (2003);  28 482-489
  • 36 Maguire B.. The passive dispersal of small aquatic organisms and their colonization of isolated bodies of water.  Ecological Monographs. (1963);  33 161-185
  • 37 Mandossian A. J.. Plant associates of Sarracenia purpurea (pitcher plant) in acid and alkaline habitats.  Michigan Botanist. (1965);  4 107-114
  • 38 Marabini J.. Sarracenia purpurea L. - ein dauerhafter Gast in einem fränkischen Teichflachmoor.  Hoppea, Denkschriften der Regensburgischen Botanischen Gesellschaft. (1994);  55 499-504
  • 39 Miller T. E., Horth L., Reeves R. H.. Trophic interactions in the phytotelmata communities of the Pitcher Plant, Sarracenia purpurea.  Community Ecology. (2002);  3 109-116
  • 40 Mindl B., Sonntag B., Pernthaler J., Vrba J., Psenner R., Posch T.. Effects of phosphorus loading on interactions of algae and bacteria: reinvestigation of the “phytoplankton-bacteria paradox” in a continuous cultivation system.  Aquatic Microbial Ecology. (2005);  38 203-213
  • 41 Otto H. W.. Die Farn- und Samenpflanzen der Oberlausitz.  Berichte der Naturforschenden Gesellschaft der Oberlausitz. (2004);  12 1-376
  • 42 Padisák J., Krienitz L., Scheffler W., Koschel R., Kristiansen J., Grigorszky I.. Phytoplankton succession in the oligotrophic Lake Stechlin (Germany) in 1994 and 1995.  Hydrobiologia. (1998);  369/370 179-197
  • 43 Paradise C. J., Dunson W. A.. Insect species interactions and resource effects in treeholes: are helodid beetles bottom-up facilitators of midge populations?.  Oecologia. (1997);  109 303-312
  • 44 Parisod C., Trippi C., Galland N.. Genetic variability and founder effect in the pitcher plant Sarracenia purpurea (Sarraceniaceae) in populations introduced into Switzerland: from breeding to invasion.  Annals of Botany. (2005);  95 277-286
  • 45 Paterson C. G.. Overwintering ecology of the aquatic fauna associated with the pitcher plant Sarracenia purpurea L.  Canadian Journal of Zoology. (1971);  49 1455-1459
  • 46 Petchey O. L.. Prey diversity, prey composition, and predator population dynamics in experimental microcosms.  Journal of Animal Ecology. (2000);  69 874-882
  • 47 Porter K. G., Feig Y. C.. The use of DAPI for identifying and counting aquatic microflora.  Limnology and Oceanography. (1980);  25 943-948
  • 48 Prankevicius A. B., Cameron D. M.. Bacterial dinitrogen-fixation in the leaf of the northern pitcher plant (Sarracenia purpurea L.).  Canadian Journal of Botany. (1991);  69 2296-2298
  • 49 Pröschold T., Marin B., Schlösser U. G., Melkonian M.. Molecular phylogeny and taxonomic revision of Chlamydomonas (Chlorophyta). I. Emendation of Chlamydomonas Ehrenberg and Chloromonas Gobi, and description of Oogamochlamys gen. nov. and Lobochlamys gen. nov.  Protist. (2001);  152 265-300
  • 50 Rango J. J.. Summer phenology of aquatic insect communities inhabiting the leaves of the northern pitcher plant, Sarracenia purpurea L.  Northeastern Naturalist. (1999);  6 19-30
  • 51 Revill D. L., Stewart K. W., Schlichting H. E.. Passive dispersal of viable algae and protozoa by certain craneflies and midges.  Ecology. (1967);  48 1023-1027
  • 52 Richardson B. A., Rogers C., Richardson M. J.. Nutrients, diversity, and community structure of two phytotelm systems in a lower montane forest, Puerto Rico.  Ecological Entomology. (2000);  25 348-356
  • 53 Rogerson A., Detwiler A.. Abundance of airborne heterotrophic protists in ground level air of South Dakota.  Atmospheric Research. (1999);  51 35-44
  • 54 Rott E.. Some results from phytoplankton counting intercalibrations.  Schweizerische Zeitschrift für Hydrologie. (1981);  43 34-62
  • 55 Schlichting H. E., Sides S. L.. The passive transport of aquatic microorganisms by selected Hemiptera.  Journal of Ecology. (1969);  57 759-764
  • 56 Starmach K.. Süsswasserflora von Mitteleuropa. Vol. 1: Chrysophyceae und Haptophyceae. Stuttgart; Gustav Fischer Verlag (1985)
  • 57 Tökes Z. A., Woon W. C., Chambers S. M.. Digestive enzymes secreted by the carnivorous plant Nepenthes macferlanei L.  Planta. (1974);  119 39-46
  • 58 Tranvik L. J., Porter K. G., Sieburth  McN. J.. Occurrence of bacterivory in Cryptomonas, a common freshwater phytoplankter.  Oecologia. (1989);  78 473-476
  • 59 Utermöhl H.. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik.  Mitteilungen der Internationalen Vereinigung für theoretische und angewandte Limnologie. (1958);  9 1-38
  • 60 Vogler P.. Probleme der Phosphoranalytik in der Limnologie und ein neues Verfahren zur Bestimmung von gelöstem Orthophosphat neben kondensierten Phosphaten und organischen Phosphorsäureresten.  Internationale Revue der gesamten Hydrobiologie. (1965);  50 33-48
  • 61 Wherry E. T.. Acidity relations of the Sarracenias.  Journal of the Washington Acadademy of Sciences. (1929);  19 379-390
  • 62 Wherry E. T.. The geographical relations of Sarracenia purpurea.  Bartonia. (1933);  15 1-6
  • 63 Yanoviak S. P.. Predation, resource availability, and community structure in Neotropical water-filled tree holes.  Oecologia. (2001);  126 125-133

1 Present address: Museum für Naturkunde der Humboldt-Universität zu Berlin, Invalidenstraße 43, 10115 Berlin, Germany

K. Küsel

Limnology Research Group
Institute of Ecology
Friedrich Schiller University Jena

Carl-Zeiss-Promenade 10

07745 Jena

Germany

Email: kirsten.kuesel@uni-jena.de

Guest Editor: S. Porembski