Aktuelle Traumatol 2006; 36(5): 195-207
DOI: 10.1055/s-2006-924754
Originalarbeit

Georg Thieme Verlag KG Stuttgart · New York

Knorpelschaden und Gonarthrose

Teil I: Physiologie und Pathophysiologie des Knorpels und der Gonarthrose Part I: Physiology and Pathophysiology of Cartilage and KneeCartilage Lesions and GonarthritisG. Spahn1
  • 1Praxisklinik für Unfallchirurgie und Orthopädie, Eisenach
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
02. Januar 2007 (online)

Zusammenfassung

Die Funktion des hyalinen Knorpels hängt entscheidend von der Homöostase der chondralen Matrixbestandteile (vor allem Kollagen II und Proteoglykane) ab. Dieses Gleichgewicht wird durch die abgestimmte Steuerung von Synthese- und Abbauprozessen der Matrixbestandteile gewährleistet. Knorpel ist ein mehrschichtiges Gewebe: oberflächliche Tangentialschicht, mittlere Schicht, Radiärschicht, Tidemark und subchondraler Knochen. Die oberflächliche Schicht ist reich an zur Oberfläche ausgerichteten Kollagenfasern und damit sehr resistent gegenüber den auftretenden Druck- und Scherkräften. Die tieferen Schichten enthalten Proteoglykane in hoher Konzentration, diese binden Wasser und bewirken so die Vorspannung für die Kollagenfasern und können vor allem auftretende Druckkräfte neutralisieren. Der Matrix-Turnover wird hauptsächlich durch Zytokine und die damit verbundene Aktivierung von Matrix-Metallo-Proteasen gesteuert. Charakteristisch für den Knorpel ist die viskoelastische Reaktion auf Belastung. Im Rahmen der Knorpeldegeneration kommt es zum Überwiegen kataboler Prozesse in dessen Folge der Kollagen-II- und Proteoglykangehalt sinkt. Wassereinstrom führt zum Knorpelödem und die Chondrozyten werden apoptotisch. Das führt zur Verminderung der mechanischen Belastbarkeit, infolgedessen Knorpelschäden unterschiedlicher Schweregrade entstehen. Sekundäre Schäden am subchondralen Knochen und der Synovia führen schließlich zur Arthrose.

Abstract

Articular cartilage homoeostasis is critical for joint function. The steady state homoeostasis of articular cartilage matrix composits (above all collagen type II and proteoglycans) is a balance between anabolic morphogens such as cartilage derived morphogenetic proteins. Cartilage composites of superficial tangential zone, middle zone, deep radial zone, tide mark and subchondral bone. The superior zone is rich on radial orientated collagen fibers. This causes a high mechanical resistance against pressure and shear forces. The deep layers contain more proteoglycans and water. This creates a preload for the collagen fibers as well as neutralizes pressure forces too. The matrix turnover is regulated by cytokines which activate matrix metalloproteinases. The biomechanical property of cartilage is characterized by viscoelasticity. Cartilage degeneration is caused by the increase of katabolic processes. There is a decrease of matrix composites like collagen type II and proteoglycans. The increases of water content products the edema and the chondrocytes become apoptoptically. This is conformed by a decreased mechanical resistance. The cartilage defects results from this loss of mechanical properties. Secondary are damages within the subchondral bone and the synovia. This is characteristically for the osteoarthritis.

Literatur

  • 1 Wissenschaftliche Tabellen: Somatometrie und Biochemie. Basel; Ciba-Geigy 1982
  • 3 Roche Lexikon der Medizin. Jena, München; Urban und Fischer 2003
  • 4 Abbott A E, Levine W N, Mow V C. Biomechanics of articular cartilage and menisci of the adult knee. Callaghan JJ, Rosenberg AG, Rubash HE, Simonian PT, Wickiewicz TL The Adult Knee. Philadelphia, Baltimore, New York, London, Buenos Aires, Hong Kong, Sydney, Tokyo; Lippincott Williams and Wilkins 2003: 81-104
  • 5 Adams C S, Horton Jr W E. Chondrocyte apoptosis increases with age in the articular cartilage of adult animals.  Anat Rec. 1998;  250 418-425
  • 6 Adams M E, Grant M D, Ho A. Cartilage proteoglycan changes in experimental canine osteoarthritis.  J Rheumatol. 1987;  14 107-109
  • 7 Ahmed M S, Matsumura B, Cristian A. Age-related changes in muscles and joints.  Phys Med Rehabil Clin N Am. 2005;  16 19-39
  • 8 Aigner T, Reichenberger E, Bertling W, Kirsch T, Stoss H, von der Mark K. Type X collagen expression in osteoarthritic and rheumatoid articular cartilage.  Virchows Arch B Cell Pathol Incl Mol Pathol. 1993;  63 205-211
  • 9 Amin A R, Abramson S B. The role of nitric oxide in articular cartilage breakdown in osteoarthritis.  Curr Opin Rheumatol. 1998;  10 263-268
  • 10 Arend W P, Malyak M, Guthridge C J, Gabay C. Interleukin-1 receptor antagonist: role in biology.  Annu Rev Immunol. 1998;  16 27-55
  • 11 Armstrong C G, Mow V C. Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration, and water content.  J Bone Joint Surg [Am]. 1982;  64 88-94
  • 12 Atkinson K, Reginato A M. The synovium. Callaghan JJ, Rosenberg AG, Rubash HE, Simonian PT, Wickiewicz TL The Adult Knee. Philadelphia, Baltimore, New York, London, Buenos Aires, Hong Kong, Sydney, Tokyo; Lippincott Williams and Wilkins 2003: 203-212
  • 13 Bennell K L, Hinman R S, Metcalf B R, Crossley K M, Buchbinder R, Smith M, McColl G. Relationship of knee joint proprioception to pain and disability in individuals with knee osteoarthritis.  J Orthop Res. 2003;  21 792-797
  • 14 Benninghoff A. Über den funktionellen Bau des Knorpels.  Anat Anz. 1922;  55 250-267
  • 15 Blanco F J, Ochs R L, Schwarz H, Lotz M. Chondrocyte apoptosis induced by nitric oxide.  Am J Pathol. 1995;  146 75-85
  • 16 Bobacz K, Gruber R, Soleiman A, Graninger W B, Luyten F P, Erlacher L. Cartilage-derived morphogenetic protein-1 and -2 are endogenously expressed in healthy and osteoarthritic human articular chondrocytes and stimulate matrix synthesis.  Osteoarthritis Cartilage. 2002;  10 394-401
  • 17 Bonner W M, Jonsson H, Malanos C, Bryant M. Changes in the lipids of human articular cartilage with age.  Arthritis Rheum. 1975;  18 461-473
  • 18 Brandt K D. Neuromuscular aspects of osteoarthritis: a perspective.  Novartis Found Symp. 2004;  260 49-58
  • 19 Brinckmann P, Frobin W, Leivseth G. Orthopädische Biomechanik. Stuttgart, New York; Thieme 2000
  • 20 Bruyere O, Collette J, Kothari M, Zaim S, White D, Genant H K, Peterfy C, Burlet N, Ethgen D, Montague T, Dabrowski C, Reginster J Y. Osteoarthritis, magnetic resonance imaging and biochemical markers: a one-year prospective study.  Ann Rheum Dis. 2006;  65 1050-1054
  • 21 Buckland-Wright C. Subchondral bone changes in hand and knee osteoarthritis detected by radiography.  Osteoarthritis Cartilage. 2004;  12 (Suppl A) S10-S19
  • 22 Budde B, Blumbach K, Ylostalo J, Zaucke F, Ehlen H W, Wagener R, la-Kokko L, Paulsson M, Bruckner P, Grassel S. Altered integration of matrilin-3 into cartilage extracellular matrix in the absence of collagen IX.  Mol Cell Biol. 2005;  25 10465-10478
  • 23 Carter D R, Beaupre G S, Wong M, Smith R L, Andriacchi T P, Schurman D J. The mechanobiology of articular cartilage development and degeneration.  Clin Orthop Relat Res. 2004;  427 S69-S77
  • 25 Chandnani V, Resnick D. Radiologic diagnosis. Moskowitz RW, Howell DS, Altman RD, Buckwalter JA, Goldberg VM Osteoarthritis. Diagnosis and Medical/Surgical Management.  Philadelphia, London, New York, St. Louis, Sydney, Toronto; WB Saunders 2001: 239-272
  • 26 Charlebois M, McKee M D, Buschmann M D. Nonlinear tensile properties of bovine articular cartilage and their variation with age and depth.  J Biomech Eng. 2004;  126 129-137
  • 27 Deutzmann R, Bruckner-Tuderman L, Bruckner P. Binde- und Stützgewebe. Löffler G, Petrides PE Biochemie und Pathobiochemie. Berlin, Heidelberg, New York, Hongkong, London, Mailand, Paris, Tokyo; Springer 2003: 753-788
  • 28 Elliott D M, Narmoneva D A, Setton L A. Direct measurement of the Poisson's ratio of human patella cartilage in tension.  J Biomech Eng. 2002;  124 223-228
  • 29 Fitzgerald G K, Piva S R, Irrgang J J. Reports of joint instability in knee osteoarthritis: its prevalence and relationship to physical function.  Arthritis Rheum. 2004;  51 941-946
  • 30 Frank S, Schulthess T, Landwehr R, Lustig A, Mini T, Jeno P, Engel J, Kammerer R A. Characterization of the matrilin coiled-coil domains reveals seven novel isoforms.  J Biol Chem. 2002;  277 19071-19079
  • 31 Gelse K, Soder S, Eger W, Diemtar T, Aigner T. Osteophyte development - molecular characterization of differentiation stages.  Osteoarthritis Cartilage. 2003;  11 141-148
  • 32 Goldring S R, Goldring M B. The role of cytokines in cartilage matrix degeneration in osteoarthritis.  Clin Orthop Relat Res. 2004;  427 S27-S36
  • 34 Greenwald R A, Moy W W. Inhibition of collagen gelation by action of the superoxide radical.  Arthritis Rheum. 1979;  22 251-259
  • 35 Greenwald R A, Moy W W. Effect of oxygen-derived free radicals on hyaluronic acid.  Arthritis Rheum. 1980;  23 455-463
  • 36 Greenwald R A, Moy W W, Seibold J. Functional properties of cartilage proteoglycans.  Semin Arthritis Rheum. 1978;  8 53-67
  • 37 Guilak F, Mow V C. The mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions in articular cartilage.  J Biomech. 2000;  33 1663-1673
  • 38 Hall A C, Urban J P, Gehl K A. The effects of hydrostatic pressure on matrix synthesis in articular cartilage.  J Orthop Res. 1991;  9 1-10
  • 39 Hall M C, Mockett S P, Doherty M. Relative impact of radiographic osteoarthritis and pain on quadriceps strength, proprioception, static postural sway and lower limb function.  Ann Rheum Dis. 2006;  65 865-870
  • 40 Hardy M M, Seibert K, Manning P T, Currie M G, Woerner B M, Edwards D, Koki A, Tripp C S. Cyclooxygenase 2-dependent prostaglandin E2 modulates cartilage proteoglycan degradation in human osteoarthritis explants.  Arthritis Rheum. 2002;  46 1789-1803
  • 41 Hashimoto S, Ochs R L, Komiya S, Lotz M. Linkage of chondrocyte apoptosis and cartilage degradation in human osteoarthritis.  Arthritis Rheum. 1998;  41 1632-1638
  • 42 Hashimoto S, Ochs R L, Rosen F, Quach J, McCabe G, Solan J, Seegmiller J E, Terkeltaub R, Lotz M. Chondrocyte-derived apoptotic bodies and calcification of articular cartilage.  Proc Natl Acad Sci USA. 1998;  95 3094-3099
  • 43 Heinrich P C, Schaper F, Timmermann A, Martens A S, Lehmann U. Endokrine Funktionen. Zytokine. Löffler G, Petrides PE Biochemie und Pathobiochemie. Berlin, Heidelberg, New York, Hongkong, London, Mailand, Paris, Tokyo; Springer 2003: 814-835
  • 44 Hesse I, Mohr W, Hesse W. [Morphologic changes in the early stages of arthrosis].  Orthopäde. 1990;  19 16-27
  • 45 Hollander A P, Pidoux I, Reiner A, Rorabeck C, Bourne R, Poole A R. Damage to type II collagen in aging and osteoarthritis starts at the articular surface, originates around chondrocytes, and extends into the cartilage with progressive degeneration.  J Clin Invest. 1995;  96 2859-2869
  • 46 Jaffe F F, Mankin H J, Weiss C, Zarins A. Water binding in the articular cartilage of rabbits.  J Bone Joint Surg [Am]. 1974;  56 1031-1039
  • 47 Jurvelin J S, Buschmann M D, Hunziker E B. Mechanical anisotropy of the human knee articular cartilage in compression.  Proc Inst Mech Eng [H]. 2003;  217 215-219
  • 48 Kamibayashi L, Wyss U P, Cooke T D, Zee B. Changes in mean trabecular orientation in the medial condyle of the proximal tibia in osteoarthritis.  Calcif Tissue Int. 1995;  57 69-73
  • 49 Kelman A, Lui L, Yao W, Krumme A, Nevitt M, Lane N E. Association of higher levels of serum cartilage oligomeric matrix protein and N-telopeptide crosslinks with the development of radiographic hip osteoarthritis in elderly women.  Arthritis Rheum. 2006;  54 236-243
  • 50 Kim Y J, Bonassar L J, Grodzinsky A J. The role of cartilage streaming potential, fluid flow and pressure in the stimulation of chondrocyte biosynthesis during dynamic compression.  J Biomech. 1995;  28 1055-1066
  • 51 Kiviranta P, Rieppo J, Korhonen R K, Julkunen P, Toyras J, Jurvelin J S. Collagen network primarily controls Poisson's ratio of bovine articular cartilage in compression.  J Orthop Res. 2006;  24 690-699
  • 52 Kleemann R U, Krocker D, Cedraro A, Tuischer J, Duda G N. Altered cartilage mechanics and histology in knee osteoarthritis: relation to clinical assessment (ICRS Grade).  Osteoarthritis Cartilage. 2005;  13 958-963
  • 53 Klein T J, Chaudhry M, Bae W C, Sah R L. Depth-dependent biomechanical and biochemical properties of fetal, newborn, and tissue-engineered articular cartilage.  J Biomech. 2005;  29
  • 54 Koelling S, Clauditz T S, Kaste M, Miosge N. Cartilage oligomeric matrix protein is involved in human limb development and in the pathogenesis of osteoarthritis.  Arthritis Res Ther. 2006;  8 R56
  • 55 Koralewicz L M, Engh G A. Comparison of proprioception in arthritic and age-matched normal knees.  J Bone Joint Surg [Am]. 2000;  82 1582-1588
  • 56 Laasanen M S, Saarakkala S, Toyras J, Hirvonen J, Rieppo J, Korhonen R K, Jurvelin J S. Ultrasound indentation of bovine knee articular cartilage in situ.  J Biomech. 2003;  36 1259-1267
  • 57 Lai W M, Hou J S, Mow V C. A triphasic theory for the swelling and deformation behaviors of articular cartilage.  J Biomech Eng. 1991;  113 245-258
  • 58 Laufer S. Role of eicosanoids in structural degradation in osteoarthritis.  Curr Opin Rheumatol. 2003;  15 623-627
  • 59 Li J, Kim K S, Park J S, Elmer W A, Hutton W C, Yoon S T. BMP‐2 and CDMP‐2: stimulation of chondrocyte production of proteoglycan.  J Orthop Sci. 2003;  8 829-835
  • 60 Löffler G. Stoffwechsel von Triglycerinen und Fettsäuren. Löffler G, Petrides PE Biochemie und Pathobiochemie. Berlin, Heidelberg, New York, Hongkong, London, Mailand, Paris, Tokyo; Springer 2003: 753-788
  • 61 Löffler G, Montenarh M. Replikation und Gentechnik. Löffler G, Petrides PE Biochemie und Pathobiochemie. Berlin, Heidelberg, New York, Hongkong, London, Mailand, Paris, Tokyo; Springer 2003: 209-242
  • 62 Mankin H J. Mitosis in articular cartilage of immature rabbits. A histologic, stathmokinetic (colchicine) and autoradiographic study.  Clin Orthop Relat Res. 1964;  34 170-183
  • 63 Maroudas A, Bayliss M T, Uchitel-Kaushansky N, Schneiderman R, Gilav E. Aggrecan turnover in human articular cartilage: use of aspartic acid racemization as a marker of molecular age.  Arch Biochem Biophys. 1998;  350 61-71
  • 64 Maroudas A, Venn M. Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. II. Swelling.  Ann Rheum Dis. 1977;  36 399-406
  • 65 Martin J A, Buckwalter J A. Telomere erosion and senescence in human articular cartilage chondrocytes.  J Gerontol A Biol Sci Med Sci. 2001;  56 B172-B179
  • 66 Martin J A, Ellerbroek S M, Buckwalter J A. Age-related decline in chondrocyte response to insulin-like growth factor-I: the role of growth factor binding proteins.  J Orthop Res. 1997;  15 491-498
  • 67 Meachim G, Allibone R. Topographical variation in the calcified zone of upper femoral articular cartilage.  J Anat. 1984;  139 341-352
  • 68 Messier S P, Glasser J L, Ettinger Jr W H, Craven T E, Miller M E. Declines in strength and balance in older adults with chronic knee pain: a 30-month longitudinal, observational study.  Arthritis Rheum. 2002;  47 141-148
  • 69 Meyer F A, Yaron I, Yaron M. Synergistic, additive, and antagonistic effects of interleukin-1 beta, tumor necrosis factor alpha, and gamma-interferon on prostaglandin E, hyaluronic acid, and collagenase production by cultured synovial fibroblasts.  Arthritis Rheum. 1990;  33 1518-1525
  • 70 Milentijevic D, Torzilli P A. Influence of stress rate on water loss, matrix deformation and chondrocyte viability in impacted articular cartilage.  J Biomech. 2005;  38 493-502
  • 71 Mohr W. Gelenkpathologie. Berlin, Heidelberg, New York; Springer 2000
  • 72 Moser C, Baltzer A, Reinecke J, Wehling P. Die Rolle der Zytokine bei Knorpeldefekten und in der Knorpeltherapie.  Arthroskopie. 2005;  18 181-185
  • 73 Moskowitz R W, Howell D S, Goldberg V M, Muniz O, Pita J C. Cartilage proteoglycan alterations in an experimentally induced model of rabbit osteoarthritis.  Arthritis Rheum. 1979;  22 155-163
  • 74 Mow V C, Holmes M H, Lai W M. Fluid transport and mechanical properties of articular cartilage: a review.  J Biomech. 1984;  17 377-394
  • 75 Mow V C, Wang C C, Hung C T. The extracellular matrix, interstitial fluid and ions as a mechanical signal transducer in articular cartilage.  Osteoarthritis Cartilage. 1999;  7 41-58
  • 76 Murphy G, Docherty A J. The matrix metalloproteinases and their inhibitors.  Am J Respir Cell Mol Biol. 1992;  7 120-125
  • 78 Nagase H, Kashiwagi M. Aggrecanases and cartilage matrix degradation.  Arthritis Res Ther. 2003;  5 94-103
  • 79 Pai Y C, Rymer W Z, Chang R W, Sharma L. Effect of age and osteoarthritis on knee proprioception.  Arthritis Rheum. 1997;  40 2260-2265
  • 80 Poole A R, Rosenberg L C, Reiner A, Ionescu M, Bogoch E, Roughley P J. Contents and distributions of the proteoglycans decorin and biglycan in normal and osteoarthritic human articular cartilage.  J Orthop Res. 1996;  14 681-689
  • 81 Poole C A, Flint M H, Beaumont B W. Chondrons extracted from canine tibial cartilage: preliminary report on their isolation and structure.  J Orthop Res. 1988;  6 408-419
  • 82 Pullig O, Weseloh G, Swoboda B. Expression of type VI collagen in normal and osteoarthritic human cartilage.  Osteoarthritis Cartilage. 1999;  7 191-202
  • 83 Rizkalla G, Reiner A, Bogoch E, Poole A R. Studies of the articular cartilage proteoglycan aggrecan in health and osteoarthritis. Evidence for molecular heterogeneity and extensive molecular changes in disease.  J Clin Invest. 1992;  90 2268-2277
  • 84 Saarakkala S, Korhonen R K, Laasanen M S, Toyras J, Rieppo J, Jurvelin J S. Mechano-acoustic determination of Young's modulus of articular cartilage.  Biorheology. 2004;  41 167-179
  • 85 Schneiderman R, Keret D, Maroudas A. Effects of mechanical and osmotic pressure on the rate of glycosaminoglycan synthesis in the human adult femoral head cartilage: an in vitro study.  J Orthop Res. 1986;  4 393-408
  • 86 Schumacher B L, Hughes C E, Kuettner K E, Caterson B, Aydelotte M B. Immunodetection and partial cDNA sequence of the proteoglycan, superficial zone protein, synthesized by cells lining synovial joints.  J Orthop Res. 1999;  17 110-120
  • 87 Sharif M, Granell R, Johansen J, Clarke S, Elson C, Kirwan J R. Serum cartilage oligomeric matrix protein and other biomarker profiles in tibiofemoral and patellofemoral osteoarthritis of the knee.  Rheumatology (Oxford). 2006;  45 522-526
  • 88 Spahn G, Heinecke K, Gross G, Tepper W. [Arthroscopic joint debridement for gonarthrosis: influence of degree of chondral damage and muscle weakness on results].  Z Orthop Ihre Grenzgeb. 2004;  142 60-65
  • 89 Spahn G, Wittig R. [Biomechanical properties (compressive strength and compressive pressure at break) of hyaline cartilage under axial load].  Zentralbl Chir. 2003;  128 78-82
  • 90 Stefanovic-Racic M, Mollers M O, Miller L A, Evans C H. Nitric oxide and proteoglycan turnover in rabbit articular cartilage.  J Orthop Res. 1997;  15 442-449
  • 91 Tortorella M D, Burn T C, Pratta M A, Abbaszade I, Hollis J M, Liu R, Rosenfeld S A, Copeland R A, Decicco C P, Wynn R, Rockwell A, Yang F, Duke J L, Solomon K, George H, Bruckner R, Nagase H, Itoh Y, Ellis D M, Ross H, Wiswall B H, Murphy K, Hillman Jr M C, Hollis G F, Newton R C, Magolda R L, Trzaskos J M, Arner E C. Purification and cloning of aggrecanase-1: a member of the ADAMTS family of proteins.  Science. 1999;  284 1664-1666
  • 92 Torzilli P A, Rose D E, Dethmers D A. Equilibrium water partition in articular cartilage.  Biorheology. 1982;  19 519-537
  • 93 Verzijl N, DeGroot J, Thorpe S R, Bank R A, Shaw J N, Lyons T J, Bijlsma J W, Lafeber F P, Baynes J W, TeKoppele J M. Effect of collagen turnover on the accumulation of advanced glycation end products.  J Biol Chem. 2000;  275 39027-39031
  • 94 Vignon E, Arlot M, Patricot L M, Vignon G. The cell density of human femoral head cartilage.  Clin Orthop Relat Res. 1976;  121 303-308
  • 95 Vilalta C, Nunez M, Segur J M, Domingo A, Carbonell J A, Macule F. Knee osteoarthritis: interpretation variability of radiological signs.  Clin Rheumatol. 2004;  23 501-504
  • 96 von der Mark K, Kirsch T, Nerlich A, Kuss A, Weseloh G, Gluckert K, Stoss H. Type X collagen synthesis in human osteoarthritic cartilage. Indication of chondrocyte hypertrophy.  Arthritis Rheum. 1992;  35 806-811
  • 97 Wachsmuth L, Engelke K. High-resolution imaging of osteoarthritis using microcomputed tomography.  Methods Mol Med. 2004;  101 231-248
  • 98 Wegener L, Kisner C, Nichols D. Static and dynamic balance responses in persons with bilateral knee osteoarthritis.  J Orthop Sports Phys Ther. 1997;  25 13-18
  • 99 Wong M, Carter D R. Articular cartilage functional histomorphology and mechanobiology: a research perspective.  Bone. 2003;  33 1-13
  • 100 Yudoh K, Nguyen T, Nakamura H, Hongo-Masuko K, Kato T, Nishioka K. Potential involvement of oxidative stress in cartilage senescence and development of osteoarthritis: oxidative stress induces chondrocyte telomere instability and downregulation of chondrocyte function.  Arthritis Res Ther. 2005;  7 R380-R391
  • 101 Zhou S, Cui Z, Urban J P. Factors influencing the oxygen concentration gradient from the synovial surface of articular cartilage to the cartilage-bone interface: a modeling study.  Arthritis Rheum. 2004;  50 3915-3924

Dr. med. Gunter Spahn

Praxisklinik für Unfallchirurgie und Orthopädie

Sophienstraße 16

99817 Eisenach

Telefon: 0 36 91/7 35 00

Fax: 0 36 91/73 50 11

eMail: spahn@pk-eisenach.de

    >