Aktuelle Ernährungsmedizin 2007; 32(4): 167-174
DOI: 10.1055/s-2007-970918
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Insulinresistenz

Insulin ResistanceM.  J.  Müller1 , A.  Bosy-Westphal1 , B.  Hitze1 , J.  Postler1 , E.  Kossel2 , M.  Pfeuffer3
  • 1Institut für Humanernährung und Lebensmittelkunde, Christian-Albrechts-Universität zu Kiel
  • 2Klinik für Diagnostische Radiologie Abt. für medizinische Physik, UKSH, Kiel
  • 3Bundesforschungsanstalt für Ernährung und Lebensmittel, Kiel
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
27. Juli 2007 (online)

Zusammenfassung

Insulinresistenz bedeutet eine gestörte Wirkung von Insulin. Diese kann durch eine verminderte Sensitivität, Responsivität oder Sensitivität plus Responsivität charakterisiert sein. Insulinresistenz kann physiologisch (z. B. in der Pubertät) auftreten oder Teil der Pathophysiologie sein (z. B. bei Diabetes mellitus Typ 2). Die Erfassung der Insulinwirkung ist methodisch aufwendig, klinische Surrogate (wie der Plasmainsulinspiegel) zeigen eine hohe Varianz und weite Normalbereiche. Neben biologischen Faktoren sind Körperzusammensetzung, Alter und Fitness wesentliche Determinanten der Insulinwirkung. Die viszeralen Fettdepots und ektope Fette in Muskel und Leber zeigen eine enge und inverse Beziehung zur Insulinwirkung. Allerdings erklären sie die Insulinresistenz nur anteilig. Neue Konzepte der Insulinresistenz berücksichtigen neben den klassischen Determinanten endokrine Faktoren (z. B. Leptin), die Inflammation im Fettgewebe und Schädigungen von Zellorganellen wie der Mitochondrien und des endoplasmatischen Retikulums. Die Behandlung der Insulinresistenz wird diese Erkenntnisse zukünftig neben den traditionellen Ansätzen (wie die Gewichtsreduktion) berüksichtigen müssen.

Abstract

Insulin resistance is characterised by reduced insulin action. It is characterised by reduced insulin sensitivity, responsivity or both. Insulin resistance can occur physiologically (eg during puberty) or is part of pathophysiology (eg in diabetes mellitus type 2). Methodologically assessment of insulin resistance is cumbersome. Clinical characterisation (eg hyperinsulinemia) by proxies of insulin resistance is limited by high intra-individual variation and lack of suitable normal ranges. Besides biological factors body composition, fitness and age are considered to be the major determinants of insulin action. Visceral fat as well as ectopic fat in skeletal muscle and liver show inverse association with insulin action. In addition to these classical determinants hormones (eg leptin), inflammation and disturbancies in organelle function (eg mitochondria and endoplasmatic reticulum) add to insulin resistance. Future treatments of insulin resistance has to take into account these new concepts in pathophysiology.

Literatur

  • 1 Rizza R A, Mandarino L J, Gerich J E. Dose-response characteristics for effects of insulin on production and utilization of glucose in man.  The American J Physiol. 1981;  240 E630-E639
  • 2 Ferrannini E, Mari A. How to measure insulin sensitivity.  Journal of Hypertension. 1998;  16 895-906
  • 3 Natali A, Gastaldelli A, Camastra S, Sironi A M, Toschi E, Masoni A, Ferrannini E, Mari A. Dose-response characteristics of insulin action on glucose metabolism: a non-steady state approach.  American J Physiol. 2000;  278 E794-E801
  • 4 Monzillo L U, Hamdy O. Evaluation of Insulin Sensitivity in Clinical Practice and in Research Settings.  Nutrition Reviews. 2003;  61 397-412
  • 5 Kahn S E, Hull R L, Utzschneider K M. Mechanism linking obesity to insulin resistance and type 2 diabetes.  Nature. 2006;  4444 840-846
  • 6 Martens E, Zick R, Mitzkat H S, Mühlen A von zur, Müller M J. Assessment of insulin action in man: role of hyperglycemia.  Acta Endocrinologia. 1988;  119 213-222
  • 7 Jones C NO, Abbasi F, Carantoni M, Polonsky K S, Reaven G M. Roles of insulin resistance and obesity in regulation of plasma insulin concentrations.  American J Physiol. 2000;  278 E501-E508
  • 8 Natali A, Toschi E, Camastra S, Gastaldelli A, Groop L, Ferrannini E. Determinants of postabsorptive endogenous glucose output in non-diabetic subjects. European Group for the Study of Insulin Resistance (EGIR).  Diabetologia. 2000;  43 1266-1272
  • 9 Baldeweg S E, Golay A, Natali A, Balkau B, DelPrato S, Coppack S W. Insulin resistance, lipid and fatty acid concentrations in 867 healthy Europeans. European Group for the study of Insulin Resistance (EGIR).  Eur J Clin Invest. 2000;  30 45-52
  • 10 Ferraninni E, Natali A, Bell P, Cavallo-Perin P, Lalic N, Mingrone G. on behalf of the European Group for the Study of Insulin Resistance (EGIR) . Insulin Resistance and Hypersecretion in Obesity.  J Clin Invest. 1997;  100 (5) 1166-1173
  • 11 Clausen J O, Borch-Johansen K, Ibsen H, Bergmann R N, Hougaard P, Winther K, Pedersen O. Insulin Sensitivity Index, Acute Insulin Response, and Glucose Effectiveness in a Population-based Sample of 380 young Healthy Caucasians.  J Clin Invest. 1996;  98 1195-1209
  • 12 Stern S E, Williams K, Ferrannini E, DeFronzo R A, Bogardus C, Stern M P. Identification of Individuals With Insulin Resistance Using Routine Clinical Measurements.  Diabetes. 2005;  54 333-339
  • 13 Tuan C-Y, Abbasi F, Lamendola C, McLaughlin T, Reaven G. Usefulness of plasma glucose and insulin concentrations in identifying patients with insulin resistance.  American J Cardiology. 2003;  92 606-610
  • 14 Müller M J. Ernährungsmedizinische Praxis, 2. Auflage. Heidelberg; Springer Verlag 2007
  • 15 Reaven G M. Metabolic Syndrom: Definition, Relationship to insulin resistance and clinical utility. In: Shils ME et al. (eds) Modern Nutrition in Health and Disease (10. Auflage). Philadelphia; Lippincott, Williams & Wilkins 2006
  • 16 Stumvoll M, Tataranni P A, Stafan N, Vozarova B, Bogardus C. Glucose Allostasis.  Diabetes. 2003;  52 903-909
  • 17 Stumvoll M, Tataranni P A, Bogardus C. The hyperbolic law - a 25 year perspective.  Diabetologia. 2005;  48 207-209
  • 18 Galassi A, Reynolds K, He J. Metabolic Syndrome and Risk of Cardiovascular Disease: A Meta-Analysis.  American J Medicine. 2006;  119 812-819
  • 19 van Gaal L F, Mertens I L, De Block C E. Mechanism linking obesity with cardiovascular disease.  Nature. 2006;  4444 875-880
  • 20 Groop L C, Kankuri M K, Schalin-Jäntti C, Ekstrand A, Nikula-Ijäs P, Widen E, Kuismanen E, Eriksson J, Franssila-Kallunki A, Saloranta C, Koskimies S. Association between Polymorphism of the glycogen synthase gene and non-insulin-dependent diabetes mellitus.  NEJM. 1993;  328 10-11
  • 21 Sparrow D, Borkan G A, Gerzof S G, Wisniewski C, Silbert C K. Relationship of Fat Distribution to Glucose Tolerance.  Diabetes. 1996;  35 411-415
  • 22 Despres J P, Lemieux I. Abdominal obesity and metabolic syndrome.  Nature. 2006;  4444 881-887
  • 23 Cefalu W T, Wang Z Q, Werbel S, Bell-Farrow A, Crouse J R, Hinson W H, Terry J G, Anderson R. Contribution of visceral Fat Mass to the Insulin Resistance of Aging.  Metabolism. 1995;  44 954-959
  • 24 Hawley J A, Lessard S J. Mitochondrial function: use it or lose it.  Diabetologia. 2007;  50 699-702
  • 25 Seematter G, Guenat E, Schneiter P, Cayeux C, Jequier E, Tappy L. Effects of mental stress on insulin-mediate glucose metabolism and energy expenditure in lean and obese women.  American J Physiol. 2000;  279 E799-E805
  • 26 De Luca C, Olefsky J M. Stressed out about obesity and insulin resistance.  Nature Medicine. 2006;  12 41-42
  • 27 Petersen K F, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman D L, DiPietro L, Cline G W, Shulman G I. Mitochondrial Dysfunction in the Elderly: Possible Role in Insulin Resistance.  Science. 2003;  300 1140-1142
  • 28 Mazzali G, Francesco V, Zoico E, Fantin F, Zamboni G, Benati C, Bambara V, Negri M, Bosello O, Zamboni M. Interrelations between fat distribution, muscle lipid content, adipocytokines, and insulin resistance: effect of moderate weight loss in older women.  American J Clin Nutrition. 2006;  84 1193-1199
  • 29 Corcoran M P, Lamon-Fava S, Fielding R A. Skeletal muscle lipid deposition and insulin resistence: effect of dietary fatty acids and exercise.  Am J Clin Nutr. 2007;  85 662-667
  • 30 Kautzky-Willer A, Krssak M, Winzer C, Pacini G, Tura A, Farhan S, Wagner O, Brabant G, Horn R, Stingli H, Schneider B, Waldhäusl W, Roden M. Increase of Intramyocellular Lipid Concentration Indentifies Impaired Glucose Metabolism in Women with Previous Gestational Diabetes.  Diabetes. 2003;  52 244-251
  • 31 Thamer C, Machan J, Bachmann O, Haap M, Dahl D, Wietek B, Tschritter O, Niess A, Brechtel K, Fritsche A, Claussen C, Jacob S, Schick F, Häring H-U, Stumvoll M. Intramyocellular lipids: anthropometric determinants and relationships with maximal aerobic capacity and insulin sensitivity.  J Clin Endocrinol Metab. 2003;  88 1785-1791
  • 32 Rosen E D, Spiegelman B M. Adipocytes as regulators of energy balance and glucose homeostasis.  Nature. 2006;  4444 847-853
  • 33 Hotamisligil G S. Inflammation and matabolic disorders.  Nature. 2006;  4444 860-867
  • 34 Makowski L, Hotamisligie G S. Fatty acid binding protein - the evolutionary crossroads of inflammatory and katabolic responses.  J Nutr. 2004;  134 2464S-2468S
  • 35 Lowell B B, Shulman G I. Mitochondrial Dysfunction and Type 2 Diabetes.  Science. 2003;  307 384-387
  • 36 Petersen K F, Hendler R, Price T, Perseghin G, Rothman D L, Held N, Amatruda J M, Shulman G I. 13C/31P NMR Studies on the Mechanism of Insulin Resistance in Obesity.  Diabetes. 1998;  47 381-386
  • 37 Shulman G I. Unraveling the Cellular Mechanism of Insulin Resistance in Humans: New Insights from Magnetic Resonance Spectroscopy.  Int Union Physiol Sci/Am Physiol Soc. 2004;  6 1548-9213
  • 38 Parra M D, Martinez de Morentin B E, Martinez J A. Postprandial insulin response and mitochondrial oxidation in obese men nutritionally treated to lose weight.  Europ J Clin Nutrition. 2005;  59 334-340
  • 39 Shulmann G I. Cellular mechanism of insulin resistance.  J of Clin Invest. 2000;  106 171-176
  • 40 Shimabukuro M, Koyama K, Chen G, Wang M-Y, Trieu F, Lee Y, Newgard C B, Unger R H. Direct antidiabetic effect of leptin through triglyceride depletion of tissues.  Proc Natl Acad Sci USA. 1997;  94 4673-4641
  • 41 Lee Y, Wang M, Kakuma T, Wang Z-W, Babcock E, McCorklei K, Higa M, Zhou Y T, Unger R H. Liporegulation in Diet-induced Obesity. The antisteatotic role of hyperleptinemia.  J Biol Chem. 2001;  276 5629-5635
  • 42 Oral E A, Simhal V, Ruiz E, Andewelt A, Premkumar A, Snell P, Wagner A J, DePaoli A M, Reitman M L, Taylor S I, Gordon P, Garg A. Leptin replacement therapy for lipodystrophy.  New Engl J Med. 2002;  346 570-578
  • 43 Ebihara K, Kusakabe T, Hirata M, Masuzaki H, Miyanga F, Kobayashi N, Tanaka T, Chusho H, Miyazawa T, Hayashi T, Hosoda K, Ogawa Y, DePaoli A M, Fukushima M, Nakao K. Efficacy and safety of leptin-replacement therapy and possible mechanisms of leptin action in patients with generalized lipodystrophy.  J Endocrinol Metab. 2007;  92 532-541
  • 44 Huang W, Dedousis N, Bandi A, Lopaschuk G D, O'Doherty R M. Liver triglyceride secretion and lipid oxidative metabolism are rapidly altered by leptin in vivo.  Endocrinology. 2006;  147 1480-1487
  • 45 Fishman S, Muzumdar R H, Atzmon G, Ma X, Yang X, Einstein F H, Barzilai N. Resistance to leptin action is the major determinant of hepatic triglyceride accumulation in vivo.  FASEB J. 2007;  21 53-60
  • 46 Wang M, Orci L, Ravazzola M, Unger R H. Fat storage in adipocytes requires inactivation of leptin's paracrine activity: implications for treatment of human obesity.  PNAS. 2005;  13 18011-18016
  • 47 Tanaka T, Hidaka S, Masuzaki H, Yasue S, Minokoshi Y, Ebihara K, Chusho H, Ogawa Y, Toyoda T, Sato K, Miyanga F, Fujimoto M, Tomita T, Kusakabe T, Kobayashi N, Tanioka H, Hayashi T, Hosoda K, Yoshimatsu H, Sakata T, Nakao K. Skeletal muscle AMP-activated protein kinase phosphorylation parallels metabolic phenotype in leptin transgenic mice under dietary modification.  Diabetes. 2005;  54 2365-2374

Prof. Dr. med. Manfred James Müller

Institut für Humanernährung und Lebensmittelkunde Agrar- und Ernährungswissenschaftliche Fakultät Christian-Albrechts-Universität zu Kiel

Düsternbrooker Weg 17 - 19

24105 Kiel

Telefon: 0431/8805670

Fax: 0431/8805679

eMail: mmueller@nutrfoodsc.uni-kiel.de

    >