Synlett 2007(8): 1223-1226  
DOI: 10.1055/s-2007-977442
LETTER
© Georg Thieme Verlag Stuttgart · New York

Straightforward Synthesis of Highly Hydroxylated Phloroglucinol-Type 3-Deoxyanthocyanidins

Marie Kueny-Stotz, Géraldine Isorez, Stefan Chassaing*, Raymond Brouillard
Laboratoire de Chimie des Polyphénols, Université Strasbourg I, CNRS: LC3 UMR 7177, 4, rue Blaise Pascal, 67008 Strasbourg, France
e-Mail: stefanchassaing@mac.com;
Further Information

Publication History

Received 8 February 2007
Publication Date:
18 April 2007 (online)

Abstract

Phloroglucinol-type 3-deoxyanthocyanidins were synthesized through the interaction between phloroglucinol derivatives and arylethynylketones in acetic acid in the presence of aqueous hexafluorophosphoric acid. This methodology was applied to achieve the synthesis of natural apigeninidin, luteolinidin and ­tricetanidin with high yields.

    References and Notes

  • 1a Timberlake CF. Bridle P. The Flavonoids   Academic Press; New York: 1975.  p.214-266  
  • 1b Hrazdina G. The Flavonoids Advances in Research   Chapman and Hall; London: 1982.  p.135-188  
  • 1c Harborne JB. Grayer RJ. The Flavonoids: Advances in Research since 1980   Chapman and Hall; London: 1988.  p.1-20  
  • 1d Strack D. Wray V. The Flavonoids: Advances in Research since 1986   Chapman and Hall; London: 1994.  p.1-22  
  • 1e Harborne JB. Williams CA. Nat. Prod. Rep.  1998,  15:  631 
  • 1f Harborne JB. Williams CA. Nat. Prod. Rep.  2001,  18:  310 
  • 1g Williams CA. Grayer RJ. Nat. Prod. Rep.  2004,  21:  539 
  • 1h Andersen OM. Jordheim M. Flavonoids: Chemistry, Biochemistry and Applications   CRC Press; Boca Raton: 2006.  p.471-551  
  • 2a Coggon P. Moss GA. Graham HN. Sanderson GW. J. Agric. Food Chem.  1973,  21:  727 
  • 2b Mazza G. Miniati E. Anthocyanins in Fruits, Vegetables and Grains   CRC Press; Boca Raton: 1993.  p.225 
  • 3 Dangles O. Elhajji H. Helv. Chim. Acta  1994,  77:  1595 
  • 4a Darmenton P, and Philippe M. inventors; FR  2757383.  ; Chem. Abstr. 1998, 129, 140458n
  • 4b Sauter G, Braun H.-J, Brouillard R, Fougerousse A, and Roehri-Stoeckel C. inventors; WO  03000214 A1. 
  • 5 Czerney P. Graness G. Birckner E. Vollmer F. Rettig W. J. Photochem. Photobiol. A  1995,  89:  31 
  • 6a Pina F. Melo MJ. Maestri M. Passaniti P. Comaioni N. Balzani V. Eur. J. Org. Chem.  1999,  3199 
  • 6b Roque A. Lodeiro C. Pina F. Maestri M. Ballardini R. Balzani V. Eur. J. Org. Chem.  2002,  2699 
  • 7a Mas T. Susperregui J. Berké B. Chèze C. Moreau S. Nuhrich A. Vercauteren J. Phytochemistry  2000,  53:  679 
  • 7b Clifford MN. J. Sci. Food Agric.  2000,  80:  1063 
  • 7c Kong JM. Chia LS. Goh NK. Chia TF. Brouillard R. Phytochemistry  2003,  64:  923 
  • 7d Hou DX. Curr. Mol. Med.  2003,  3:  149 
  • 8 For a review on the synthesis of anthocyanidins, see: Iacobucci GA. Sweeny JG. Tetrahedron  1983,  39:  3005 
  • 9a Pratt DD. Robinson R. J. Chem. Soc.  1922,  1577 
  • 9b Pratt DD. Robinson R. J. Chem. Soc.  1923,  745 
  • 9c Pratt DD. Robinson R. J. Chem. Soc.  1924,  188 
  • 9d Pratt DD. Robinson R. J. Chem. Soc.  1924,  199 
  • 9e Pratt DD. Robinson R. J. Chem. Soc.  1925,  1128 
  • 10 Kuhnert N. Clifford MN. Radenac A.-G. Tetrahedron Lett.  2001,  42:  9261 
  • 11 Mas T. Synthesis  2003,  1878 
  • A similar approach, using sulfuric acid, has been mentioned in the early fifties and surprisingly reported only once thereafter:
  • 12a Johnson AW. Melhuish RR. J. Chem. Soc.  1947,  346 
  • 12b Gramshaw JW. Johnson AW. King TJ. J. Chem. Soc.  1958,  4040 
  • 12c Costantino L. Rastelli G. Rossi MC. Albasini A. J. Chem. Soc., Perkin Trans. 2  1995,  227 
  • 13 Marcus Y. Hefter G. Chem. Rev.  2006,  106:  4585 
  • 14a Katritzky AR. Czerney P. Level JR. Du W. Eur. J. Org. Chem.  1998,  2623 
  • 14b Fichtner C. Remennikov G. Mayr H. Eur. J. Org. Chem.  2001,  4451 
  • 15 Doxsee KM. Feigel M. Kent DS. Canary JW. Knobler CB. Cram D. J. Am. Chem. Soc.  1987,  109:  3098 
16

Apigeninidin Trimethylether Hexafluorophosphate ( 10)
Purple powder; yield 93%; mp 201 °C. IR (KBr): 1652, 1640 (s, C=O), 1600, 1569, 1506, 1456, 1436, 1378, 1339, 1241, 1124, 1052, 834 (m, P-F) cm-1. UV/Vis [MeOH-HCl (5%, 1 N)]: λmax (ε) = 266 (24900), 394 (18000), 460 nm (13600 M-1·cm-1). 1H NMR [300 MHz, CD3CN-TFA-d 1 (1%)]: δ = 3.96 (3 H, s, OCH3), 4.07 (3 H, s, OCH3), 4.09 (3 H, s, OCH3), 6.80 (1 H, d, J = 2.2 Hz), 7.19 (2 H, m), 7.23 (1 H, dd, J = 2.2, 0.7 Hz), 8.05 (1 H, d, J = 8.5 Hz), 8.32 (2 H, m), 9.07 (1 H, dd, J = 8.5 Hz, 5 J = 0.7 Hz). 13C NMR [75 MHz, CD3CN-TFA-d 1 (1%)]: δ = 55.9/57.0/57.2 (OCH3), 93.4, 99.8, 111.3, 113.4, 115.8, 120.8, 131.9, 148.7, 158.8, 159.0, 167.0, 171.4, 171.7. MS (ESI, positive mode): 297 (100) [M+]. HRMS (ESI): m/z calcd: 297.1121; found: 297.1109.

17

Chrysinidin Hexafluorophosphate ( 13)
Orange powder; yield 91%. IR (KBr): 3412 (s, br, OH), 1642 (s, C=O), 1580, 1563, 1541, 1381, 1340, 1269, 1239, 1203, 1193, 835 (m, P-F) cm-1. UV/Vis [MeOH-HCl (5%, 1 N)]: λmax (ε) = 274 (35400), 474 nm (36200 M-1·cm-1). 1H NMR [300 MHz, CD3CN-TFA-d 1 (1%)]: δ = 6.81 (1 H, d, J = 2.2 Hz), 7.11 (1 H, dd, J = 2.2, 0.7 Hz), 7.72 (2 H, m), 7.84 (1 H, m), 8.13 (1 H, d, J = 8.4 Hz), 8.35 (2 H, m), 9.25 (1 H, dd, J = 8.4, 0.7 Hz). 13C NMR [75 MHz, CD3CN-TFA-d 1 (1%)]: δ = 95.7, 102.9, 111.2, 114.4, 128.9, 129.1, 130.0, 135.8, 150.5, 158.4, 159.4, 171.1, 171.4. MS (ESI, positive mode): 239 (100) [M+]. HRMS (ESI): m/z calcd: 239.0703; found: 239.0696.

18

All synthesized compounds exhibit NMR spectroscopic data identical to previously reported ones in the literature. [10-12]