Aktuelle Ernährungsmedizin 2008; 33(3): 106-115
DOI: 10.1055/s-2007-986327
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Analytik von oxidativem Stress - was ist gesichert?

Measurements of Oxidative Stress - Where are we Now?N.  Breusing1 , T.  Grune1
  • 1Institut für Biologische Chemie und Ernährungswissenschaft, Lehrstuhl für Biofunktionalität und Sicherheit der Lebensmittel, Universität Hohenheim, Stuttgart
Further Information

Publication History

Publication Date:
26 May 2008 (online)

Zusammenfassung

Durch oxidativen Stress induzierte Schäden können durch spezifische Biomarker quantifiziert werden, die zur Aufklärung der Bedeutung von oxidativen Stressvorgängen in der Ätiologie von Krankheiten beitragen könnten. Ein großes Problem ist dabei allerdings die Vielzahl der Methoden, mit denen sowohl oxidative Schäden als auch Veränderungen in der Antioxidanzienabwehr erfasst werden können. Viele Erkrankungen wie z. B. Arteriosklerose, Krebs, Morbus Alzheimer, Morbus Parkinson, altersabhängige Makuladegeneration und Strahlenschäden werden mit oxidativem Stress und den damit verbundenen zellulären Schäden in Verbindung gebracht. Dabei ist oxidativer Stress oft nicht auslösendes Ereignis, sondern eher begleitender pathophysiologischer Faktor. Die verschiedenen Methoden zur Charakterisierung von oxidativem Stress zeichnen sich durch große Unterschiede in der Spezifität, Genauigkeit, Reproduzierbarkeit als auch Machbarkeit unter In-vivo-Bedingungen aus. Hinzu kommen große individuelle Schwankungen in der basalen oxidativen Schädigung als auch in der antioxidativen Abwehr, wodurch bis heute eine einheitliche Etablierung von Referenzwerten nicht möglich ist. In diesem Übersichtsartikel sollen die Möglichkeiten der Erfassung von oxidativem Stress hinsichtlich der zur Verfügung stehenden Methoden und deren Vor- und Nachteile beleuchtet werden. Die Biomarker für oxidativen Stress werden dabei unter dem Aspekt der Eignung als klinische Biomarker diskutiert.

Abstract

Oxidative stress induced damage can by quantified by specific biomarkers which might contribute to the clarification of the impact of oxidative stress reactions in the etiology of diseases. A major problem hereby results from the multitude of methods measuring oxidative damage and changes in antioxidative defence. Many diseases like arteriosclerosis, cancer, Morbus Alzheimer, Morbus Parkinson, age-related macular degeneration and radiation damage are associated with oxidative stress and related cellular damage. Thereby, oxidative stress is not the causing event but rather an accompanying pathophysiological factor. Many methods for the determination of oxidative stress are characterized by major differences in specifity, accuracy, reproducibility, as well as feasibility under in vivo conditions. Additionally, there is a great individual variation in basal oxidative damage as well as antioxidative defence, making the establishment of reference values impossible. This review article focuses on possibilities of assessing oxidative stress with regard to available methods, their advantages, and disadvantages. Especially the reliability of biomarkers of oxidative stress in clinical settings is discussed.

Literatur

  • 1 Halliwell B. Free radicals, antioxidants, and human disease: curiosity, cause or consequence?.  Lancet. 1994;  344 721-724
  • 2 Fridovich I. Overview: biological sources of O2 -.  Methods Enzymol. 1984;  105 59-61
  • 3 Marnett L J. Oxyradicals and DNA damage.  Carcinogenesis. 2000;  21 (3) 361-370
  • 4 Breen A P, Murphy J A. Reactions of oxyl radicals with DNA.  Free Radic Biol Med. 1995;  18 1033-1077
  • 5 Zamzami N, Marchetti P, Castedo M, Decaudin D, Macho A, Hirsch T, Susin S A, Petit P X, Mignotte B, Kroemer G. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death.  J Exp Med. 1995;  182 367-377
  • 6 Chang H, Oehrl W, Elsner P, Thiele J J. The role of H2O2 as a mediator of UVB-induced apoptosis in keratinocytes.  Free Radic Res. 2003;  37 655-63
  • 7 Burdon R H, Rice-Evans C. Free radicals and the regulation of mammalian cell proliferation.  Free Radic Res Commun. 1989;  6 345-358
  • 8 Klann E, Roberson E D, Knapp L T, Sweatt J D. A role for superoxide in protein kinase C activation and induction of long-term potentiation.  J Biol Chem. 1998;  273 4516-4522
  • 9 Abe J, Okuda M, Huang Q, Yoshizumi M, Berk B C. Reactive oxygen species activate p90 ribosomal S6 kinase via Fyn and Ras.  J Biol Chem. 2000;  275 1739-1748
  • 10 Meyer M, Pahl H L, Baeuerle P A. Regulation of the transcription factors NF-kappa B and AP-1 by redox changes.  Chem Biol Interact. 1994;  91 91-100
  • 11 Sies H. Biochemistry of oxidative stress.  Angew Chem Int Ed Engl. 1986;  25 1058-1071
  • 12 Suzuki Y J, Forman H J, Sevanian A. Oxidants as stimulators of signal transduction.  Free Radic Biol Med. 1997;  22 269-285
  • 13 Valko M, Leibfritz D, Moncol J, Cronin M T, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease.  Int J Biochem Cell Biol. 2007;  39 44-84
  • 14 Narkowicz C K, Vial J H, McCartney P W. Hyperbaric oxygen therapy increases free radical levels in the blood of humans.  Free Radic Res Commun. 1993;  19 71-80
  • 15 Schneider M, Diemer K, Engelhart K, Zankl H, Trommer W E, Biesalski H K. Protective effects of vitamins C and E on the number of micronuclei in lymphocytes in smokers and their role in ascorbate free radical formation in plasma.  Free Radic Res. 2001;  34 209-219
  • 16 Margolis S A, Duewer D L. Measurement of ascorbic acid in human plasma and serum: stability, intralaboratory repeatability, and interlaboratory reproducibility.  Clin Chem. 1996;  42 1257-1262
  • 17 Gibson R S. Principles of Nutritional Assessment. New York, NY; Oxford University Press 1990
  • 18 Elsayed N M. Antioxidant mobilization in response to oxidative stress: a dynamic environmental-nutritional interaction.  Nutrition. 2001;  17 828-834
  • 19 Pincemail J, Deby C, Camus G, Pirnay F, Bouchez R, Massaux L, Goutier R. Tocopherol mobilization during intensive exercise.  Eur J Appl Physiol Occup Physiol. 1988;  57 189-191
  • 20 Urso M L, Clarkson P M. Oxidative stress, exercise,and antioxidant supplementation.  Toxicol. 2003;  189 41-54
  • 21 Waring W S, Webb D J, Maxwell S R. Uric acid as a risk factor for cardiovascular disease.  QJM. 2000;  93 707-713
  • 22 Griffiths H R, Moller L, Bartosz G, Bast A, Bertoni-Freddari C, Collins A, Cooke M, Coolen S, Haenen G, Hoberg A M, Loft S, Lunec J, Olinski R, Parry J, Pompella A, Poulsen H, Verhagen H, Astley S B. Biomarkers.  Mol Aspects Med. 2002;  23 101-208
  • 23 Karel M, Schaich K, Roy R B. Interaction of peroxidizing methyl linoleate with some proteins and amino acids.  J Agric Food Chem. 1975;  23 159-163
  • 24 Dean R T, Fu S, Stocker R, Davies M J. Biochemistry and pathology of radical-mediated protein oxidation.  Biochem J. 1997;  324 1-18
  • 25 Girotti A W, Kriska T. Role of lipid hydroperoxides in photo-oxidative stress signaling.  Antioxid Redox Signal. 2004;  6 301-310
  • 26 Cathcart R, Schwiers E, Ames B N. Detection of picomole levels of lipid hydroperoxides using a dichlorofluorescein fluorescent assay.  Methods Enzymol. 1984;  105 352-358
  • 27 Heaton F W, Uri N. Improved iodometric methods for the determination of lipid peroxides.  J Sci Food Agric. 1958;  9 781-786
  • 28 Chapman R A, McFarlane W D. A colorimetric method for the determination of fat peroxides and its application in the study of the keeping quality of milk powder.  Cand J Res. 1943;  21 133ff
  • 29 Jiang Z Y, Hunt J V, Wolff S P. Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein.  Anal Biochem. 1992;  202 384-389
  • 30 Jiang Z Y, Woollard A C, Wolff S P. Lipid hydroperoxide measurement by oxidation of Fe2+ in the presence of xylenol orange. Comparison with the TBA assay and an iodometric method.  Lipids. 1991;  26 853-856
  • 31 Smith L L, Hill F L. Detections of sterol hydroperoxides of thin-layer chromatoplates by means of Wurster dyes.  J Chromatogr. 1972;  66 101-109
  • 32 Hamm D L, Hammond E G, Parvanah V, Snyder H E. The determination of peroxides by the Stamm method.  J Am Oil Chem Soc. 1965;  42 920-922
  • 33 Eiss M I, Giesecke P. Colorimetric determination of organic peroxides.  Anal Chem. 1959;  31 1558-1560
  • 34 Auerbach B J, Kiely J S, Cornicelli J A. A spectrophotometric microtiter-based assay for the detection of hydroperoxy derivatives of linoleic acid.  Anal Biochem. 1992;  201 375-380
  • 35 Marnett L J. Oxy radicals, lipid peroxidation and DNA damage.  Toxicology. 2002;  181 - 182 219-222
  • 36 Niedernhofer L J, Daniels J S, Rouzer C A, Greene R E, Marnett L J. Malondialdehyde, a product of lipid peroxidation, is mutagenic in human cells.  J Biol Chem. 2003;  278 31426-31433
  • 37 Chia L S, Thompson J E, Moscarello M A. X-ray diffraction evidence for myelin disorder in brain from humans with Alzheimer's disease.  Biochim Biophys Acta. 1984;  775 308-312
  • 38 Benedetti A, Comporti M. Formation, Reactions and Toxicity of Aldehydes produced in the course of Lipid Peroxidation in Cellular Membranes.  Biochemistry and Bioenergetics. 1987;  18 187-202
  • 39 Esterbauer H, Schaur R J, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes.  Free Radic Biol Med. 1991;  11 81-128
  • 40 Buege J A, Aust S D. Microsomal lipid peroxidation.  Methods Enzymol. 1978;  52 302-310
  • 41 Du Z, Bramlage W J. Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts.  Journal of Agricultural and Food Chemistry. 1992;  40 1566-1570
  • 42 Yoshimura Y, Koike S, Tanaka H, Tamura K, Ohsawa K, Imaeda K, Akiyama S, Nakashima K. Fluorometric determination of lipid peroxides in tissues with 1,3-dephenyl-2-thiobarbituric acid.  Anal Sci. 1988;  4 207-210
  • 43 Gray J I. Measurement of lipid oxidation: A review.  J Am Oil Chem Soc. 1977;  55 539-546
  • 44 Wong S H, Knight J A, Hopfer S M, Zaharia O, Leach C N, Sundermann F W. Lipoperoxides in plasma as measured by liquid-chromatographic separation of malondialdehyde-thiobarbituric acid adduct.  Clin Chem. 1987;  33 214-220
  • 45 Sommerburg O, Grune T, Klee S, Ungemach F R, Siems W G. Formation of 4-hydroxynonenal and further aldehydic mediators of inflammation during bromotrichloromethane treatment of rat liver cells.  Med Inflamm. 1993;  2 27-31
  • 46 Grune T, Siems W, Werner A, Gerber G, Kostic M, Esterbauer H. Aldehyde and nucleotide separations by high-performance liquid chromatography. Application to phenylhydrazine-induced damage of erythrocytes and reticulocytes.  J Chromatogr. 1990;  520 411-417
  • 47 Wade C R, van Rij A M. In vivo lipid peroxidation in man as measured by the respiratory excretion of ethane, pentane, and other low-molecular-weight hydrocarbons.  Anal Biochem. 1985;  150 1-7
  • 48 Esterbauer H. Estimation of peroxidative damage. A critical review.  Pathol Biol (Paris). 1996;  44 25-28
  • 49 Grune T, Siems W, Kowalewski J, Zollner H, Esterbauer H. Identification of metabolic pathways of the lipid peroxidation product 4-hydroxynonenal by enterocytes of rat small intestine.  Biochem Int. 1991;  25 963-971
  • 50 Morrow J D, Hill K E, Burk R F, Nammour T M, Badr K F, Roberts 2nd  L J. A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism.  Proc Natl Acad Sci U S A. 1990;  87 9383-9387
  • 51 Basu S. Isoprostanes: novel bioactive products of lipid peroxidation.  Free Radic Res. 2004;  38 105-122.
  • 52 Montuschi P, Barnes P J, Roberts 2nd  L J. Isoprostanes: markers and mediators of oxidative stress.  FASEB J. 2004;  18 1791-1800
  • 53 Smith L L. Review of progress in sterol oxidations: 1987 - 1995.  Lipids. 1996;  31 453-487
  • 54 Sevanian A, McLeod L L. Cholesterol autoxidation in phospholipid membrane bilayers.  Lipids. 1987;  22 627-636
  • 55 Salonen J T, Nyyssonen K, Salonen R, Porkkala-Sarataho E, Tuomainen T P, Diczfalusy U, Bjorkhem I. Lipoprotein oxidation and progression of carotid atherosclerosis.  Circulation. 1997;  95 840-845
  • 56 Zieden B, Kaminskas A, Kristenson M, Kucinskiene Z, Vessby B, Olsson A G, Diczfalusy U. Increased plasma 7 beta-hydroxycholesterol concentrations in a population with a high risk for cardiovascular disease.  Arterioscler Thromb Vasc Biol. 1999;  19 967-971
  • 57 Bansal G, Singh U, Bansal M P. Effect of 7beta-hydroxycholesterol on cellular redox status and heat shock protein 70 expression in macrophages.  Cell Physiol Biochem. 2001;  11 241-246
  • 58 Zhou Q, Wasowicz E, Handler B, Fleischer L, Kummerow F A. An excess concentration of oxysterols in the plasma is cytotoxic to cultured endothelial cells.  Atherosclerosis. 2000;  149 191-197
  • 59 Smith L L, Johnson B H. Biological activities of oxysterols.  Free Radic Biol Med. 1989;  7 285-332
  • 60 Kandutsch A A, Chen H W. Inhibition of sterol synthesis in cultured mouse cells by 7alpha-hydroxycholesterol, 7beta-hydroxycholesterol, and 7-ketocholesterol.  J Biol Chem. 1973;  248 8408-8417
  • 61 Linseisen J, Wolfram G, Miller A B. Plasma 7beta-hydroxycholesterol as a possible predictor of lung cancer risk.  Cancer Epidemiol Biomarkers Prev. 2002;  11 1630-1637
  • 62 Stadtman E R, Levine R L. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins.  Amino Acids. 2003;  25 207-218
  • 63 Beckman J S, Ye Y Z, Anderson P G, Chen J, Accauitti M A, Tarpey M M, White C R. Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry.  Biol Chem Hoppe Seyler. 1994;  375 81-88
  • 64 Thuraisingham R C, Nott C A, Dodd S M, Yaqoob M M. Increased nitrotyrosine staining in kidneys from patients with diabetic nephropathy.  Kidney Int. 2000;  57 1968-1972
  • 65 Smith M A, Sayre L M, Anderson V E, Harris P L, Beal M F, Kowall N, Perry G. Cytochemical demonstration of oxidative damage in Alzheimer disease by immunochemical enhancement of the carbonyl reaction with 2,4-dinitrophenylhydrazine.  J Histochem Cytochem. 1998;  46 731-735
  • 66 Pennathur S, Jackson-Lewis V, Przedborski S, Heinecke J W. Mass spectrometric quantification of 3-nitrotyrosine, ortho-tyrosine, and o,o′-dityrosine in brain tissue of 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine-treated mice, a model of oxidative stress in Parkinson's disease.  J Biol Chem. 1999;  274 34621-34628
  • 67 Cuzzocrea S, Zingarelli B, Villari D, Caputi A P, Longo G. Evidence for in vivo peroxynitrite production in human chronic hepatitis.  Life Sci. 1998;  63 PL25-30
  • 68 Stadtman E R. Protein oxidation in aging and age-related diseases.  Ann N Y Acad Sci. 2001;  928 22-38
  • 69 Thiele J J, Hsieh S N, Briviba K, Sies H. Protein oxidation in human stratum corneum: susceptibility of keratins to oxidation in vitro and presence of a keratin oxidation gradient in vivo.  J Invest Dermatol. 1999;  113 335-339
  • 70 Sander C S, Chang H, Salzmann S, Muller C S, Ekanayake-Mudiyanselage S, Elsner P, Thiele J J. Photoaging is associated with protein oxidation in human skin in vivo.  J Invest Dermatol. 2002;  118 618-625
  • 71 Shigenaga M K, Lee H H, Blount B C, Christen S, Shigeno E T, Yip H, Ames B N. Inflammation and NO(X)-induced nitration: assay for 3-nitrotyrosine by HPLC with electrochemical detection.  Proc Natl Acad Sci U S A. 1997;  94 3211-3216
  • 72 Ischiropoulos H. Biological tyrosine nitration: a pathophysiological function of nitric oxide and reactive oxygen species.  Arch Biochem Biophys. 1998;  356 1-11
  • 73 Hammer C, Braum E. Quantification of age pigments (lipofuscin).  Comp Biochem Physiol B. 1988;  90 7-17
  • 74 Mrak R E, Griffin S T, Graham D I. Aging-associated changes in human brain.  J Neuropathol Exp Neurol. 1997;  56 1269-1275
  • 75 Tsikas D, Caidahl K. Recent methodological advances in the mass spectrometric analysis of free and protein-associated 3-nitrotyrosine in human plasma.  J Chromatogr B Analyt Technol Biomed Life Sci. 2005;  814 1-9
  • 76 Levine R L, Williams J A, Stadtman E R, Shacter E. Carbonyl assays for determination of oxidatively modified proteins.  Methods Enzymol. 1994;  233 346-357
  • 77 Buss H, Chan T P, Sluis K B, Domigan N M, Winterbourn C C. Protein carbonyl measurement by a sensitive ELISA method.  Free Radic Biol Med. 1997;  23 361-366
  • 78 Shacter E. Quantification and significance of protein oxidation in biological samples.  Drug Metab Rev. 2000;  32 307-326
  • 79 Sonntag C von. New aspects in the free-radical chemistry of pyrimidine nucleobases.  Free Radic Res Commun. 1987;  2 217-224
  • 80 Dizdaroglu M. Oxidative damage to DNA in mammalian chromatin.  Mutat Res. 1992;  275 331-342
  • 81 Nackerdien Z, Rao G, Cacciuttolo M A, Gajewski E, Dizdaroglu M. Chemical nature of DNA-protein cross-links produced in mammalian chromatin by hydrogen peroxide in the presence of iron or copper ions.  Biochemistry. 1991;  30 48730-48739
  • 82 Kasai H, Nishimura S. Formation of 8-hydroxyguanine by oxidative DNA damage, its repair and its mutagenic effects.  Adv Mutagen Res. 1993;  4 31-45
  • 83 Moriya M. Single-stranded shuttle phagemid for mutagenesis studies in mammalian cells: 8-oxoguanine in DNA induces targeted G.C→T.A transversions in simian kidney cells.  Proc Natl Acad Sci U S A. 1993;  90 1122-1126
  • 84 Halliwell B, Dizdaroglu M. The measurement of oxidative damage to DNA by HPLC and GC/MS techniques.  Free Radic Res Commun. 1992;  16 75-87
  • 85 Weimann A, Belling D, Poulsen H E. Measurement of 8-oxo-2′-deoxyguanosine and 8-oxo-2′-deoxyadenosine in DNA and human urine by high performance liquid chromatography-electrospray tandem mass spectrometry.  Free Radic Biol Med. 2001;  30 757-764
  • 86 Park E M, Shigenaga M K, Degan P, Korn T S, Kitzler J W, Wehr C M, Kolachana P, Ames B N. Assay of excised oxidative DNA lesions: isolation of 8-oxoguanine and its nucleoside derivatives from biological fluids with a monoclonal antibody column.  Proc Natl Acad Sci U S A. 1992;  89 3375-3379
  • 87 Soultanakis R P, Melamede R J, Bespalov I A, Wallace S S, Beckman K B, Ames B N, Taatjes D J, Janssen-Heininger Y M. Fluorescence detection of 8-oxoguanine in nuclear and mitochondrial DNA of cultured cells using a recombinant Fab and confocal scanning laser microscopy.  Free Radic Biol Med. 2000;  28 987-998
  • 88 Gedik C M, Wood S G, Collins A R. Measuring oxidative damage to DNA; HPLC and the comet assay compared.  Free Radic Res. 1998;  29 609-615
  • 89 Collins A, Dusinska M, Franklin M, Somorovska M, Petrovska H, Duthie S, Fillion L, Panayiotidis M, Raslova K, Vaughan N. Comet assay in human biomonitoring studies: reliability, validation, and applications.  Environ Mol Mutagen. 1997;  30 139-146
  • 90 Loft S, Poulsen H E. Estimation of oxidative DNA damage in man from urinary excretion of repair products.  Acta Biochim Pol. 1998;  45 133-144
  • 91 Cooke M S, Evans M D, Herbert K E, Lunec J. Urinary 8-oxo-2′-deoxyguanosine-source, significance and supplements.  Free Radic Res. 2000;  32 381-397
  • 92 Shigenaga M K, Gimeno C J, Ames B N. Urinary 8-hydroxy-2′-deoxyguanosine as a biological marker of in vivo oxidative DNA damage.  Proc Natl Acad Sci U S A. 1989;  86 9697-9701
  • 93 Hwang E S, Bowen P E. DNA damage, a biomarker of carcinogenesis: its measurement and modulation by diet and environment.  Crit Rev Food Sci Nutr. 2007;  47 27-50
  • 94 Ghiselli A, Serafini M, Patella F, Scaccini C. Total antioxidant capacity as a tool to adress redox status: critical view and experimental data.  Free Rad Biol Med. 2000;  29 1106-1114
  • 95 Benzie I FF, Strain J J. The ferric reducing ability of plasma (FRAP) as a measure of „antioxidant power”: the FRAP assay.  Anal Biochem. 1996;  239 70-76
  • 96 Wayner D D, Burton G W, Ingold K U, Locke S. Quantitative measurement of the total, peroxyl radical-trapping antioxidant capability of human blood plasma by controlled peroxidation. The important contribution made by plasma proteins.  FEBS Lett. 1985;  187 33-37
  • 97 Cao G, Alessio H M, Cutler R G. Oxygen-radical absorbance capacity assay for antioxidants.  Free Radic Biol Med. 1993;  14 303-311
  • 98 Miller N J, Rice-Evans C, Davies M J, Gopinathan V, Milner A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates.  Clin Sci. 1993;  84 407-412
  • 99 Glazer A N. Phycoerythrin fluorescence-based assay for reactive oxygen species.  Methods Enzymol. 1990;  186 161-168
  • 100 Esterbauer H, Striegl G, Puhl H, Rotheneder M. Continuous monitoring of in vitro oxidation of human low density lipoprotein.  Free Radic Res Commun. 1989;  6 67-75
  • 101 Sies H. Total antixidant capacity: appraisal of a concept.  J Nutr. 2007;  137 1493-1495
  • 102 Lotito S B, Frei B. Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: cause, consequence, or epiphenomenen?.  Free Rad Biol Med. 2006;  41 1727-1746
  • 103 Han D, Loukianoff S, McLaughlin L. Oxidative stress indices: analytical aspects and significance. In: Hanninen O, Packer L, Sen CK (eds) Handbook of oxidants and antioxidants in exercise. Amsterdam; Elsevier 2000: 433-484
  • 104 Mayne S T. Antioxidant nutrients and chronic disease: use of biomarkers of exposure and oxidative stress status in epidemiologic research.  J Nutr. 2003;  133, Suppl 3 933S-940S
  • 105 Prior R L. Plasma antioxidant measurements.  J Nutr. 2004;  134 3184S-3185S
  • 106 Cesarone M R, Belcaro G, Carratelli M, Cornelli U, de Sanctis M T, Incandela L, Barsotti A, Terranova R, Nicolaides A. A simple test to monitor oxidative stress.  Int Angiol. 1999;  18 127-130
  • 107 Eckert G P, Wegat T, Schaffer S, Theobald S, Müller W E. Oxidativer Stress: Apothekenrelevante Messmethoden.  Pharmazeutische Zeitung. 2006;  151, No. 24 20-31
  • 108 ESCODD . Comparison of different methods of measuring 8-oxoguanine as a marker of oxidative DNA damage. ESCODD (European Standards Committee on Oxidative DNA Damage).  Free Radic Res. 2000;  32 333-341
  • 109 Tamura S, Tsukahara H, Ueno M, Maeda M, Kawakami H, Sekine K, Mayumi M. Evaluation of a urinary multi-parameter biomarker set for oxidative stress in children, adolescents and young adults.  Free Radic Res. 2006;  40 1198-1205
  • 110 Steinbrecher U P. Role of superoxide in endothelial-cell modification of low-density lipoproteins.  Biochim Biophys Acta. 1988;  959 20-30
  • 111 Fuster V, Badimon J J, Badimon L. Clinical-pathological correlations of coronary disease progression and regression.  Circulation. 1992;  86 1-11
  • 112 Fuster V, Badimon L, Badimon J J, Chesebro J H. The pathogenesis of coronary artery disease and the acute coronary syndromes (1).  N Engl J Med. 1992;  326 242-250
  • 113 Erhardt J G, Mack H, Sobeck U, Biesalski H K. Beta-Carotene and alpha-tocopherol concentration and antioxidant status in buccal mucosal cells and plasma after oral supplementation.  Br J Nutr. 2002;  87 471-475
  • 114 Back E I, Frindt C, Nohr D, Frank J, Ziebach R, Stern M, Ranke M, Biesalski H K. Antioxidant deficiency in cystic fibrosis: when is the right time to take action?.  Am J Clin Nutr. 2004;  80 374-384
  • 115 Peng Y M, Peng Y S, Lin Y, Moon T, Roe D J, Ritenbaugh C. Concentrations and plasma-tissue-diet relationships of carotenoids, retinoids, and tocopherols in humans.  Nutr Cancer. 1995;  23 233-246
  • 116 Morrow J D, Roberts 2nd  L J. The isoprostanes. Current knowledge and directions for future research.  Biochem Pharmacol. 1996;  51 1-9

Nicolle Breusing

Institut für Biologische Chemie und Ernährungswissenschaft, Lehrstuhl für Biofunktionalität und Sicherheit der Lebensmittel, Universität Hohenheim

Garbenstraße 28

70593 Stuttgart

Phone: 0711/459-24265

Fax: 0711/459-23840

Email: breusing@uni-hohenheim.de

    >