Aktuelle Ernährungsmedizin 2008; 33(5): 225-230
DOI: 10.1055/s-2008-1067532
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Einflüsse kurzkettiger und gesättigter langkettiger Fettsäuren auf das Tumorwachstum – In-vitro- und experimentelle In-vivo-Effekte

Effects of Short-Chain and Saturated Long-Chain Fatty Acids on Tumor Growth – In Vitro and Experimental in Vivo EffectsE.  Holm1 , I.  Schade1
  • 1II. Medizinische Klinik, Klinikum Mannheim, Universität Heidelberg
Further Information

Publication History

Publication Date:
03 September 2008 (online)

Zusammenfassung

Bei den derzeitigen Ernährungsempfehlungen für Patienten mit Malignomen wird zunehmend in Betracht gezogen, dass Tumorkrankheiten durch einen fettgestützten Stoffwechsel mit erheblich gestörter Glukoseverwertung gekennzeichnet sind. Fett sollte somit das bevorzugte energetische Substrat sein. Die Frage jedoch, welche einzelnen Fette sich besonders anbieten, und welche besser vermieden werden, lässt sich nur auf der Basis von Befunden der Nährstoffpharmakologie beantworten. Im vorliegenden Übersichtsartikel werden Einflüsse der kurzkettigen und der gesättigten langkettigen Fettsäuren auf das Tumorwachstum skizziert. Die kurzkettigen Fettsäuren, besonders Butyrat, interferieren mit dem Tumorwachstum, indem sie die Proliferation hemmen, die Zelldifferenzierung und die Apoptose aber begünstigen. Außerdem verringern sie die Angiogenese, die Invasivität und die Metastasierung. Diese Effekte wurden an Zelllinien vieler Neoplasien, aber auch in vivo regelmäßig beobachtet. Vermittelnd wirkt sich hier eine veränderte Expression regulatorischer Proteine und der Kaspasen aus, wobei die betreffenden Vorgänge wohl durch eine Hemmung der Histon-Deazetylierung bedingt sind. Da die Halbwertszeit des Butyrats nur ungefähr 6 Minuten beträgt, zieht man Tributyrin (Glyzerin-Tributyrat) dem Butyrat vor. Butyrat entsteht im Übrigen bei der intestinalen bakteriellen Fermentierung der Ballaststoffe, z. B. des Pektins. Durch die gesättigten langkettigen Fettsäuren, in erster Linie durch Palmitat und Stearat, wird ebenfalls die Proliferation maligner Zellen vermindert und die Apoptoserate gesteigert, sodass das Tumorwachstum abnimmt. Als Mechanismen dieser Wirkungen dürften eine Hemmung der Glykolyse und eine Beeinträchtigung der Fettsäurensynthese in den Malignomen im Vordergund stehen. Die gesättigten langkettigen Fettsäuren sind in Milch, Butter und mehreren anderen Nahrungsfetten in nennenswerten Mengen enthalten.

Abstract

Current nutritional recommendations for patients having a malignancy tend to take into account that the metabolism of energy-yielding substrates is lipid-based, and that glucose utilization is severely impaired. Fat should thus be the preferred energy substrate. However, in order to determine which types of fat are either advisable or should be avoided, it is necessary to consider data from nutrient pharmacology. In the present review article, the effects of short-chain as well as saturated long-chain fatty acids on tumor growth are outlined. Short-chain fatty acids, in particular butyrate, interfere with tumor growth by both inhibiting proliferation and promoting cell differentiation and also apoptosis. In addition, angiogenesis, invasion and metastasis are reduced. These effects were consistently observed not only in many tumor cell lines, but also in vivo. They are mediated by an altered expression of regulatory proteins and caspases and are probably due to an inhibition of histone deacetylation. Since the half-life of butyrate is only about 6 minutes, tributyrin (glycerol tributyrate) may be used instead. Furthermore, butyrate becomes available from the bacterial fermentation of dietary fiber, e. g. of pectin in the gut. Saturated long-chain fatty acids, especially palmitate and stearate also decrease the proliferation rate of malignant cells and induce apoptosis, thus retarding tumor growth. An inhibition of both glycolysis and fatty acid synthesis in malignancies may be the predominant mechanisms of these effects. Saturated long-chain fatty acids such as palmitate and stearate are found particularly in milk, butter and several other dietary fats.

Literatur

  • 1 Holm E. Stoffwechsel und Ernährung bei Tumorkrankheiten. Stuttgart, New York; Thieme 2007
  • 2 Breitkreutz R, Tesdal K, Jentschura D. et al . Effects of a high-fat diet on body composition in cancer patients receiving chemotherapy: a randomized controlled study.  Wien Klin Wochenschr. 2005;  117 685-692
  • 3 Myzak M C, Dashwood R H. Histone deacetylases as targets for dietary cancer preventive agents: lessons learned with butyrate, diallyl disulfide, and sulforaphane.  Curr Drug Targets. 2006;  7 443-452
  • 4 Emenaker N J, Calaf G M, Cox D. et al . Short-chain fatty acids inhibit invasive human colon cancer by modulating uPA, TIMP-1, TIMP-2, mutant p53, Bcl-2, Bax, p21 and PCNA protein expression in an in vitro cell culture model.  J Nutr. 2001;  131 (11 Suppl) 3041S-3046S
  • 5 Matthews G M, Howarth G S, Butler R N. Short-Chain Fatty Acid Modulation of Apoptosis in the Kato III Human Gastric Carcinoma Cell Line.  Cancer Biol Ther. 2007;  5 569-572
  • 6 Comalada M, Bailon E, de Haro O. et al . The effects of short-chain fatty acids on colon epithelial proliferation and survival depend on the cellular phenotype.  J Cancer Res Clin Oncol. 2006;  132 487-497
  • 7 Edelman M J, Bauer K, Khanwani S. et al . Clinical and pharmacologic study of tributyrin: an oral butyrate prodrug.  Cancer Chemother Pharmacol. 2003;  51 439-444
  • 8 Novogrodsky A, Dvir A, Ravid A. et al . Effect of polar organic compounds on leukemic cells. Butyrate-induced partial remission of acute myelogenous leukemia in a child.  Cancer. 1983;  51 9-14
  • 9 Baradari V, Huether A, Hopfner M. et al . Antiproliferative and proapoptotic effects of histone deacetylase inhibitors on gastrointestinal neuroendocrine tumor cells.  Endocr Relat Cancer. 2006;  13 1237-1250
  • 10 Duan H, Heckman C A, Boxer L M. Histone deacetylase inhibitors down-regulate bcl-2 expression and induce apoptosis in t(14;18) lymphomas.  Mol Cell Biol. 2005;  25 1608-1619
  • 11 Farrow B, Rychahou P, O'Connor K L. et al . Butyrate inhibits pancreatic cancer invasion.  J Gastrointest Surg. 2003;  7 864-870
  • 12 Gaschott T, Maassen C U, Stein J. Tributyrin, a butyrate precursor, impairs growth and induces apoptosis and differentiation in pancreatic cancer cells.  Anticancer Res. 2001;  21 2815-2819
  • 13 Gillenwater A, Zou C P, Zhong M. et al . Effects of sodium butyrate on growth, differentiation, and apoptosis in head and neck squamous carcinoma cell lines.  Head Neck. 2000;  22 247-256
  • 14 Ito N, Sawa H, Nagane M. et al . Inhibitory effects of sodium butyrate on proliferation and invasiveness of human glioma cells.  Neurosurgery. 2001;  49 430-436
  • 15 Kolar S S, Barhoumi R, Callaway E S. et al . Synergy between docosahexaenoic acid and butyrate elicits p53-independent apoptosis via mitochondrial Ca(2+) accumulation in colonocytes.  Am J Physiol Gastrointest Liver Physiol. 2007;  293 G935-G943
  • 16 Kuefer R, Hofer M D, Altug V. et al . Sodium butyrate and tributyrin induce in vivo growth inhibition and apoptosis in human prostate cancer.  Br J Cancer. 2004;  90 535-541
  • 17 Litvak D A, Hwang K O, Evers B M. et al . Induction of apoptosis in human gastric cancer by sodium butyrate.  Anticancer Res. 2000;  20 779-784
  • 18 Louis M, Rosato R R, Brault L. et al . The histone deacetylase inhibitor sodium butyrate induces breast cancer cell apoptosis through diverse cytotoxic actions including glutathione depletion and oxidative stress.  Int J Oncol. 2004;  25 1701-1711
  • 19 Maier S, Reich E, Martin R. et al . Tributyrin induces differentiation, growth arrest and apoptosis in androgen-sensitive and androgen-resistant human prostate cancer cell lines.  Int J Cancer. 2000;  88 245-251
  • 20 Ramos M G, Rabelo F L, Brumatti G. et al . Butyrate increases apoptosis induced by different antineoplastic drugs in monocytic leukemia cells.  Chemotherapy. 2004;  50 221-228
  • 21 Rozental R, Faharani R, Yu Y. et al . Sodium butyrate induces apoptosis in MSN neuroblastoma cells in a calcium independent pathway.  Neurochem Res. 2004;  29 2125-2134
  • 22 Schroder C, Eckert K, Maurer H R. Tributyrin induces growth inhibitory and differentiating effects on HT-29 colon cancer cells in vitro.  Int J Oncol. 1998;  13 335-1340
  • 23 Shao Y, Zhonghua G, Marks P A. et al . Apoptotic and autophagic cell death induced by histone deacetylase inhibitors.  Proc Natl Acad Sci USA. 2004;  101 18030-18035
  • 24 Sonnemann J, Kumar K S, Heesch S. et al . Histone deacetylase inhibitors induce cell death and enhance the susceptibility to ionizing radiation, etoposide, and TRAIL in medulloblastoma cells.  Int J Oncol. 2006;  28 755-766
  • 25 Yamamoto H, Fujimoto J, Okamoto E. et al . Suppression of growth of hepatocellular carcinoma by sodium butyrate in vitro and in vivo.  Int J Cancer. 1998;  76 897-902
  • 26 Avivi-Green C, Polak-Charcon S, Madar Z. et al . Apoptosis cascade proteins are regulated in vivo by high intracolonic butyrate concentration: Correlation with colon cancer inhibition.  Oncol Res. 2000;  12 83-95
  • 27 Li X, Mikkelsen I M, Mortensen B. et al . Butyrate reduces liver metastasis of rat colon carcinoma cells in vivo and resistance to oxidative stress in vitro.  Clin Exp Metastasis. 2004;  21 331-338
  • 28 Hara I, Miyake H, Hara S. et al . Sodium butyrate induces apoptosis in human renal cell carcinoma cells and synergistically enhances their sensitivity to anti-Fas-mediated cytotoxicity.  Int J Oncol. 2000;  17 1213-1218
  • 29 Johnstone R W. Histone-deacetylase inhibitors: novel drugs for the treatment of cancer.  Nat Rev Drug Discov. 2002;  1 287-299
  • 30 Kouraklis G, Theocharis S. Histone deacetylase inhibitors: a novel target of anticancer therapy (review).  Oncol Rep. 2006;  15 489-494
  • 31 Rada-Iglesias A, Enroth S, Ameur A. et al . Butyrate mediates decrease of histone acetylation centered on transcription start sites and down-regulation of associated genes.  Genome Res. 2007;  17 708-719
  • 32 Miller A A, Kurschel E, Osieka R. et al . Clinical pharmacology of sodium butyrate in patients with acute leukemia.  Eur J Cancer Clin Oncol. 1987;  23 1283-1287
  • 33 Conley B A, Egorin M J, Tait N. et al . Phase I study of the orally administered butyrate prodrug, tributyrin, in patients with solid tumors.  Clin Cancer Res. 1998;  4 629-634
  • 34 Su J, He L, Zhang N. et al . Evaluation of tributyrin lipid emulsion with affinity to low-density lipoprotein: pharmacokinetics in adult male Wistar rats and cellular activity on Caco-2 and HepG2 cell lines.  J Pharmacol Exp Ther. 2006;  316 62-70
  • 35 Nkondjock A, Krewski D, Johnson K C. et al . Specific fatty acid intake and the risk of pancreatic cancer in Canada.  Br J Cancer. 2005;  92 971-977
  • 36 Leosdottir M, Nilsson P M, Nilsson J A. et al . Dietary fat intake and early mortality patterns – data from The Malmo Diet and Cancer Study.  J Intern Med. 2005;  258 153-165
  • 37 Tinsley I J, Schmitz J A, Pierce D A. Influence of dietary fatty acids on the incidence of mammary tumors in the C3H mouse.  Cancer Res. 1981;  41 1460-1465
  • 38 Buckman D K, Chapkin R S, Erickson K L. 2007 Modulation of mouse mammary tumor growth and linoleate enhanced metastasis by oleate.  J Nutr. 1990;  120 148-157
  • 39 Gleeson R P, Ayub M, Wright J T. et al . Fatty acid control of growth of human cervical and endometrial cancer cells.  Br J Cancer. 1990;  61 500-503
  • 40 Hardy S, Langelier Y, Prentki M. Oleate activates phosphatidylinositol 3-kinase and promotes proliferation and reduces apoptosis of MDA-MB-231 breast cancer cells, whereas palmitate has opposite effects.  Cancer Res. 2000;  60 6353-6358
  • 41 Rose D P, Connolly J M. Effects of fatty acids and inhibitors of eicosanoid synthesis on the growth of a human breast cancer cell line in culture.  Cancer Res. 1990;  50 7139-7144
  • 42 Wicha M S, Liotta L A, Kidwell W R. Effects of free fatty acids on the growth of normal and neoplastic rat mammary epithelial cells.  Cancer Res. 1979;  39 426-435
  • 43 Wickramasinghe N S, Jo H, McDonald J M. et al . Stearate inhibition of breast cancer cell proliferation. A mechanism involving epidermal growth factor receptor and G-proteins.  Am J Pathol. 1996;  148 987-995
  • 44 Weber G, Lea M A, Convery H J. et al . Regulation of gluconeogenesis and glycolysis: studies of mechanisms controlling enzyme activity.  Adv Enzyme Regul. 1967;  5 257-300
  • 45 Marchut E, Guminska M, Kedryna T. The inhibitory effect of various fatty acids on aerobic glycolysis in Ehrlich ascites tumour cells.  Acta Biochem Pol. 1986;  13 7-16
  • 46 Eigenbrodt E, Reinacher M, Scheefers-Borchel U. et al . Double role for pyruvate kinase type M2 in the expansion of phosphometabolite pools found in tumour cells.  Clin Rev Oncogen. 1992;  3 91-115
  • 47 Beckers A, Organe S, Timmermans L. et al . Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells.  Cancer Res. 2007;  67 8180-8187
  • 48 Chajes V, Cambot M, Moreau K. et al . Acetyl-CoA carboxylase alpha is essential to breast cancer cell survival.  Cancer Res. 2006;  66 5287-5294
  • 49 Kuhajda F P. Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology.  Nutrition. 2000;  16 202-208
  • 50 Pizer E S, Jackisch C, Wood F D. et al . Inhibition of fatty acid synthesis induces programmed cell death in human breast cancer cells.  Cancer Res. 1996;  56 2745-2747

Prof. Dr. med. E. Holm

II. Medizinische Klinik, Klinikum Mannheim, Universität Heidelberg

Bergstraße 161

69121 Heidelberg

Email: eggert.holm@urz.uni-heidelberg.de

    >