Planta Med 2008; 74(5): 497-502
DOI: 10.1055/s-2008-1074501
Pharmacology
Original Paper
© Georg Thieme Verlag KG Stuttgart · New York

Protective Effects of Amburoside A, a Phenol Glucoside from Amburana cearensis, against CCl4-Induced Hepatotoxicity in Rats

Luzia K. A. M. Leal1 , Francisco Noé Fonseca1 , Fábio Azevedo Pereira2 , Kirley M. Canuto3 , Cícero F. B. Felipe2 , Juvênia Bezerra Fontenele2 , Márcia V. Pitombeira4 , Edilberto R. Silveira3 , Glauce S. B. Viana2
  • 1Departmento de Farmácia, Universidade Federal do Ceará, Fortaleza, Brasil
  • 2Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, Fortaleza, Brasil
  • 3Departmento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, Fortaleza, Brasil
  • 4Departamento de Patologia, Universidade Federal do Ceará, Fortaleza, Brasil.
Further Information

Publication History

Received: January 14, 2008 Revised: February 29, 2008

Accepted: March 4, 2008

Publication Date:
10 April 2008 (online)

Abstract

The aim of this study was to investigate the possible beneficial effects of amburoside A, AMB [4-(O-β-D-glycopyranosyl)benzyl protocatechoate], against carbon tetrachloride (CCl4) toxicity in rats. AMB is a phenol glucoside from the Brazilian medicinal plant Amburana cearensis, popularly used for the treatment of respiratory tract affections. Acute AMB (25 and 50 mg/kg, i. p. or p. o.) treatments of CCl4-intoxicated rats significantly inhibited the increase in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels, as compared to the group treated with CCl4 only. Histological studies showed less centrolobular necrosis and inflammatory cell infiltrates in the liver of animals treated with AMB plus CCl4, when compared to the group treated with CCl4 alone. In hepatic tissues, AMB at both doses inhibited CCl4-induced thiobarbituric acid-reactive substances (TBARS) formation, indicating a blockade of CCl4-induced lipid peroxidation. AMB also reversed the decrement in glutathione contents of hepatic tissues in CCl4-intoxicated rats. Furthermore, it restored catalase activity to normal values, which was significantly increased after CCl4 treatment. Our results indicate that CCl4-induced oxidative damage in hepatic tissues is reversed by AMB treatment. The protective effect of AMB is probably due to the phenolic nature of this glucoside.

References

  • 1 Meyer S A, Kulkarni A P. Hepatotoxicity. In: Hodgson E, Smart RC, editors. Introduction to biochemical toxicology, 3 rd edition. New York; John Wiley & Sons 2001
  • 2 Poli G. Liver damage due to free radicals.  Br Med Bull. 1993;  49 604-20
  • 3 Recknagel R O, Glende Jr E A, Dolak J A, Waller R L. Mechanisms of carbon tetrachloride toxicity.  Pharmacol Ther. 1989;  43 139-54
  • 4 Handa S S, Sharma A, Chakraborti K K. Natural products and plants as liver protecting drugs.  Fitoterapia. 1986;  57 307-45
  • 5 Hsu C -Y. Antioxidant activity of extract from Polygonum aviculare L.  Biol Res. 2006;  39 281-8
  • 6 Braga R. Plantas do Nordeste especialmente do Ceará, 3 rd Edition. Fortaleza; Imprensa Oficial 1976: 219
  • 7 Canuto K M, Silveira E R. Constituintes químicos da casca do caule de Amburana cearensis A. C. Smith.  Quim Nova. 2006;  29 1241-3
  • 8 Bravo B, Sauvain M. Bioactive phenolic glycosides from Amburana cearensis.  Phytochemistry. 1999;  50 71-4
  • 9 Leal L KAM, Nechio M, Silveira E R, Canuto K M, Fontenele R A, Viana G SB. Anti-inflammatory and smooth muscle relaxant activities of the hydroalcoholic extract and chemical constituents from Amburana cearensis A. C. Smith.  Phytother Res. 2003;  17 335-40
  • 10 Leal L KAM, Costa M F, Pitombeira M, Silveira E R, Canuto K M, Viana G S. Mechanisms underlying the relaxation induced by isokaempferide from Amburana cearensis in the guinea-pig isolated trachea.  Life Sci. 2006;  79 98-104
  • 11 Costa-Lotufo L V, Jimenez P C, Wilke D V, Leal L KAM, Silveira E R, Viana G SB. Antiproliferative effects of several compounds isolated from Amburana cearensis A.C.Smith.  Z Naturforsch [C]. 2003;  58 675-80
  • 12 Leal L KAM, Moraes M O, Pessoa C, Silveira E R, Canuto K M, Viana G SB. Amburoside A, a glucoside from Amburana cearensis, protects mesencephalic cells against 6-hydroxydopamine-induced neurotoxicity.  Neurosci Lett. 2005;  388 86-90
  • 13 Buege J A, Aust S D. Microsomal lipid peroxidation.  Methods Enzymol. 1978;  52 302-10
  • 14 Ellman G L. Tissue sulfhydryl group.  Arch Biochem Biophys. 1959;  82 70-7
  • 15 Lowry O H, Rosebrough A L, Randall R J. Protein measurement with folin phenol reagent.  Biol Chem. 1951;  193 265-71
  • 16 Aebi H. Catalase in vitro.  Methods Enzymol. 1974;  2 673-8
  • 17 Ha J B, Lee J Y. The effect of chondroitin sulfate against CCl4-induced hepatotoxicity.  Biol Pharm Bull. 2003;  26 622-6
  • 18 Arora A, Byrem T M, Nair M G, Strasburg G M. Modulation of liposomal membrane fluidity by flavonoids and isoflavonoids.  Arch Biochem Biophys. 2000;  373 102-9
  • 19 Panda S, Kar A. Apigenin (4′,5,7-trihydroxyflavone) regulates hyperglycaemia, thyroid dysfunction and lipid peroxidation in alloxan-induced diabetic mice.  J Pharm Pharmacol. 2007;  59 543-8
  • 20 Cabre M, Comps J, Paternain J L, Ferre N, Joven J. Time course of changes in hepatic lipid peroxidation and glutothione metabolism in rats with carbon tetrachloride-induced cirrhosis.  Clin Exp Pharmacol Physiol. 2000;  27 694-9
  • 21 Edwards M J, Keller B J, Kauffman F C, Thurman R G. The involvement of Kupffer cells in carbon tetrachloride toxicity.  Toxicol Appl Pharmacol. 1993;  119 275-9
  • 22 Shigeki A, Masayuki I. Physiological role of sinusoidal endothelial cells and Kupffer cells and their implication in pathogenesis of liver injury.  J Hepatobiliary Pancreat Surg. 1999;  7 40-8
  • 23 Proctor P H, McGinness J E. The function of melanin.  Arch Dermatol. 1986;  122 507-8
  • 24 Rohrdanz E, Kahl R. Alterations of antioxidant enzyme expression in response to hydrogen peroxide.  Free Radic Biol Med. 1998;  24 27-38
  • 25 Szymonik-Lesiuk S, Czechowska G, Stryjecka-Zimmer M, Slomka M, Madro A, Celinski K. et al . Catalase, superoxide dismutase, and glutathione peroxidase activities in various rat tissues after carbon tetrachloride intoxication.  J Hepatobiliary Pancreat Surg. 2003;  10 309-15
  • 26 Shull S, Heintz N H, Periasamy M, Mamokor M, Jansen Y MW, Marsh I P. et al . Differential regulation of antioxidant enzymes in response to oxidants.  J Biol Chem. 1991;  266 24 398-403
  • 27 Rahman I, Biswas S K, Jimenez L A, Torres M, Forman H J. Glutathione, stress responses, and redox signaling in lung inflammation.  ARS. 2005;  7 42-59
  • 28 Galato D, Ckless K, Susin M F, Giacomelli C, Ribeiro-do-Valle R M, Spin A. Antioxidant capacity of phenolic and related compounds: correlation among electrochemical, visible spectroscopy methods and structure-antioxidant activity.  Redox Rep. 2001;  6 243-50
  • 29 Zhao Z S, O’Brien P J. The prevention of CCl4-induced liver necrosis in mice by naturally occurring methylenedioxybenzenes.  Toxicol Appl Pharmacol. 1996;  140 411-21
  • 30 Mohamed M A, Marzouk M S, Moharram F A, El-Sayed M M, Baiuomy A R. Phytochemical constituents and hepatoprotective activity of Viburnum tinus.  Phytochemistry. 2005;  66 2780-6

Dr. Luzia Kalyne A. M. Leal

Departamento de Farmácia

Universidade Federal do Ceará

Rua Capitão Francisco Pedro 1210

Fortaleza 60430-270

Brasil

Phone: +55-85-3366-8279

Fax: +55-85-3366-8257

Email: kalyne@ufc.br

    >