Nuklearmedizin 2014; 53(04): 155-161
DOI: 10.3413/Nukmed-0650-14-03
Original article
Schattauer GmbH

Combination of MRI and dynamic FET PET for initial glioma grading

Kombination von MRI und dynamischer FET-PET zum initialen Grading von Gliomen
V. Dunet
1   Department of Radiology, University Hospital Lausanne
2   Department of Nuclear Medicine, University Hospital Lausanne
,
P. Maeder
1   Department of Radiology, University Hospital Lausanne
,
M. Nicod-Lalonde
2   Department of Nuclear Medicine, University Hospital Lausanne
,
B. Lhermitte
3   Department of Pathology and Laboratory Medicine, University Hospital Lausanne
,
C. Pollo
4   Department of Neurosurgery, University Hospital, Bern, Switzerland
,
J. Bloch
5   Department of Neurosurgery, University Hospital Lausanne
,
R. Stupp
6   Department of Oncology, University Hospital Lausanne
,
R. Meuli
1   Department of Radiology, University Hospital Lausanne
,
J. O. Prior
2   Department of Nuclear Medicine, University Hospital Lausanne
› Author Affiliations
Further Information

Publication History

received: 13 March 2014

accepted in revised form: 08 April 2014

Publication Date:
02 January 2018 (online)

Summary

Aim: MRI and PET with 18F-fluoro-ethyl-tyro- sine (FET) have been increasingly used to evaluate patients with gliomas. Our purpose was to assess the additive value of MR spectroscopy (MRS), diffusion imaging and dynamic FET-PET for glioma grading. Patients, methods: 38 patients (42 ± 15 aged, F/M: 0.46) with untreated histologically proven brain gliomas were included. All underwent conventional MRI, MRS, diffusion sequences, and FET-PET within 3±4 weeks. Performances of tumour FET time-activity-curve, early-to-middle SUVmax ratio, choline / creatine ratio and ADC histogram distribution pattern for gliomas grading were assessed, as compared to histology. Combination of these parameters and respective odds were also evaluated. Results: Tumour time-activity- curve reached the best accuracy (67%) when taken alone to distinguish between low and high-grade gliomas, followed by ADC histogram analysis (65%). Combination of time-activity-curve and ADC histogram analysis improved the sensitivity from 67% to 86% and the specificity from 63-67% to 100% (p < 0.008). On multivariate logistic regression analysis, negative slope of the tumour FET time-activity-curve however remains the best predictor of high-grade glioma (odds 7.6, SE 6.8, p = 0.022). Conclusion: Combination of dynamic FET-PET and diffusion MRI reached good performance for gliomas grading. The use of FET-PET/MR may be highly relevant in the initial assessment of primary brain tumours.

Zusammenfassung

MR und 18F-Fluorethyltyrosin (FET) PET werden vermehrt zur Diagnostik bei Patienten mit Gliomen angewandt. Ziel unserer Studie war die Bewertung des zusätzlichen Nutzens von MR-Spektroskopie (MRS), Diffusions-MR und dynamischer FET-PET für das Grading von Gliomen. Patienten, Methoden: Insgesamt, 38 Patienten (42±15 Jahre, F/M = 0,46) mit unbehandelten histologisch gesicherten zerebralen Gliomen wurden mittels konventioneller MR, MRS, Diffusionssequenzen und FET-PET untersucht, die einzelnen Untersuchungen fanden im Zeitraum von 3±4 Wochen statt. Die tumorale FET-Zeit-Aktivi- täts-Kurve, das Verhältnis der frühen zur mittleren SUVmax-Ratio, die Choline/Kreatin- Ratio und ADC-Histogramm-Verteilungsmus- ter wurden für das Gliom-Grading evaluiert und verglichen mit der Histologie. Die Kombinationen dieser Parameter und ihre Odds- Ratio wurden ausgewertet. Ergebnisse: Die tumorale FET-Zeit-Aktivitäts-Kurve allein erreichte die beste Genauigkeit (67%) bei der Differenzierung von Low- und High-grade- Gliomen, gefolgt von der ADC-Histogramm- Analyse (65%). Die Kombination beider Faktoren verbesserte die Sensibilität von 67% auf 86% und die Spezifität von 63-67% auf 100% (p < 0,008). In der multivariaten logistischen Regressionsanalyse war ein negative Steigungsfaktor der tumoralen FET-Zeit-Akti- vitäts-Kurve der beste Indikator für high-grade Gliome (Odds 7,6, SE 6,8, p = 0,022). Schlussfolgerung: Die Kombination von dynamischer FET-PET und Diffusions-MRI ist gut zum Grading von Gliomen geeignet. Daher könnte der Kombination von FET-PET/MRT hohe Relevanz in der initialen Beurteilung primärer Hirntumoren zukommen.

 
  • References

  • 1 Arvinda HR, Kesavadas C, Sarma PS. et al. Glioma grading: sensitivity, specificity, positive and negative predictive values of diffusion and perfusion imaging. J Neurooncol 2009; 94: 87-96.
  • 2 Baborie A, Kuschinsky W. Lack of relationship between cellular density and either capillary density or metabolic rate in different regions of the brain. Neurosci Lett 2006; 404: 20-22.
  • 3 Bull JG, Saunders DE, Clark CA. Discrimination of paediatric brain tumours using apparent diffusion coefficient histograms. Eur Radiol 2012; 22: 447-457.
  • 4 Calcagni ML, Galli G, Giordano A. et al. Dynamic O-(2-[18F]fluoroethyl)-L-tyrosine PET for glioma grading: assessment of individual probability of malignancy. Clin Nucl Med 2011; 36: 841-847.
  • 5 Dolecek TA, Propp JM, Stroup NE, Kruchko C. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005-2009. Neurooncology 2012; 14 (Suppl. 05) v1-v49.
  • 6 Dunet V, Rossier C, Buck A. et al. Performance of 18F-fluoro-ethyl-tyrosine (18F-FET) PET for the differential diagnosis of primary brain tumor. J Nucl Med. 2012; 53: 207-214.
  • 7 Ellingson BM, Malkin MG, Rand SD. et al. Validation of functional diffusion maps as a biomarker for human glioma cellularity. J Magn Reson Imaging 2010; 31: 538-548.
  • 8 Floeth FW, Pauleit D, Wittsack HJ. et al. Multimodal metabolic imaging of cerebral gliomas: positron emission tomography with [18F]fluoro-ethyl-L-tyrosine and magnetic resonance spectroscopy. J Neurosurg 2005; 102: 318-327.
  • 9 Heiss P, Mayer S, Herz M. et al. Investigation of transport mechanism and uptake kinetics of O-(2-[18F]fluoroethyl)-L-tyrosine in vitro and in vivo. J Nucl Med 1999; 40: 1367-1373.
  • 10 Heller IH, Elliott KA. The metabolism of normal brain and human gliomas in relation to cell type and density. Can J Biochem Physiol 1955; 33: 395-403.
  • 11 Herzog H, Langen KJ, Weirich C. et al. High resolution BrainPET combined with simultaneous MRI. Nuklearmedizin 2011; 50: 74-82.
  • 12 Holodny AI, Makeyev S, Beattie BJ. et al. Apparent diffusion coefficient of glial neoplasms. AJNR Am J Neuroradiol 2010; 31: 1042-1048.
  • 13 Jansen NL, Graute V, Armbruster L. et al. MRI-suspected low-grade glioma: is there a need to perform dynamic FET PET?. Eur J Nucl Med Mol Imaging 2012; 39: 1021-1029.
  • 14 Jansen NL, Schwartz C, Graute V. et al. Prediction of oligodendroglial histology and LOH 1p/19q using dynamic [18F]FET-PET imaging in intracranial WHO grade II and III gliomas. Neuro Oncol 2012; 14: 1473-1480.
  • 15 Kang Y, Choi SH, Kim YJ. et al. Gliomas: Histogram analysis of apparent diffusion coefficient maps with standardor high-b-value diffusion-weighted MR imaging–correlation with tumor grade. Radiology 2011; 261: 882-890.
  • 16 Kunz M, Thon N, Eigenbrod S. et al. Hot spots in dynamic 18FET-PET delineate malignant tumor parts within suspected WHO grade II gliomas. Neuro Oncol 2011; 13: 307-316.
  • 17 La Fougere C, Suchorska B, Bartenstein P. et al. Molecular imaging of gliomas with PET. Neuro Oncol 2011; 13: 806-819.
  • 18 Langen KJ, Bartenstein P, Boecker H. et al. German guidelines for brain tumour imaging by PET and SPECT using labelled amino acids. Nuklearmedizin 2011; 50: 167-173.
  • 19 Law M, Yang S, Wang H. et al. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 2003; 24: 1989-1998.
  • 20 Louis DN, Ohgaki H, Wiestler OD. et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007; 114: 97-109.
  • 21 Moller-Hartmann W, Herminghaus S, Krings T. et al. Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions. Neuroradiology 2002; 44: 371-381.
  • 22 Palumbo B, Angotti F, Marano GD. Relationship between PET-FDG and MRI apparent diffusion coefficients in brain tumors. Q J Nucl Med Mol Imaging 2009; 53: 17-22.
  • 23 Pauleit D, Floeth F, Hamacher K. et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 2005; 128: 678-687.
  • 24 Pauleit D, Floeth F, Herzog H. et al. Whole-body distribution and dosimetry of O-(2-[18F]fluoro-ethyl)-L-tyrosine. Eur J Nucl Med Mol Imaging. 2003; 30: 519-524.
  • 25 Pope WB, Kim HJ, Huo J. et al. Recurrent glioblastoma multiforme: ADC histogram analysis predicts response to bevacizumab treatment. Radiology 2009; 252: 182-189.
  • 26 Pöpperl G, Gotz C, Rachinger W. et al. Value of O-(2-[18F]fluoroethyl)-L-tyrosine PET for the diagnosis of recurrent glioma. Eur J Nucl Med Mol Imaging 2004; 31: 1464-1470.
  • 27 Pöpperl G, Kreth FW, Herms J. et al. Analysis of 18F-FET PET for grading of recurrent gliomas: is evaluation of uptake kinetics superior to standard methods?. J Nucl Med 2006; 47: 393-403.
  • 28 Pöpperl G, Kreth FW, Mehrkens JH. et al. FET PET for the evaluation of untreated gliomas. Eur J Nucl Med Mol Imaging 2007; 34: 1933-1942.
  • 29 Rose S, Fay M, Thomas P. et al. Correlation of MRI-derived apparent diffusion coefficients in newly diagnosed gliomas with [18F]-fluoro-L-dopa PET. AJNR Am J Neuroradiol 2013; 34: 758-764.
  • 30 Salber D, Stoffels G, Pauleit D. et al. Differential uptake of O-(2-18F-fluoroethyl)-L-tyrosine, L-3H-methionine, and 3H-deoxyglucose in brain abscesses. J Nucl Med 2007; 48: 2056-2062.
  • 31 Spaeth N, Wyss MT, Weber B. et al. Uptake of 18F-fluorocholine, 18F-fluoroethyl-L-tyrosine, and 18F-FDG in acute cerebral radiation injury in the rat. J Nucl Med 2004; 45: 1931-1938.
  • 32 Vander Borght T, Asenbaum S, Bartenstein P. et al. EANM procedure guidelines for brain tumour imaging using labelled amino acid analogues. Eur J Nucl Med Mol Imaging 2006; 33: 1374-1380.
  • 33 Weber WA, Wester HJ, Grosu AL. et al. O-(2-[18F]fluoroethyl)-L-tyrosine and L-[methyl-11C]methionine uptake in brain tumours. Eur J Nucl Med 2000; 27: 542-549.
  • 34 Wester HJ, Herz M, Weber W. et al. Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging. J Nucl Med 1999; 40: 205-212.