Nuklearmedizin 2015; 54(04): 163-172
DOI: 10.3413/Nukmed-0727-15-02
Original article
Schattauer GmbH

18F-FDG PET/CT is a prognostic biomarker in patients affected by bone metastases from breast cancer in comparison with 18F-NaF PET/CT

18F-FDG PET/CT ist ein prognostischer Biomarker bei Patienten mit für Brustkrebspatientinnen mit Knochenmetastasen im Vergleich zu 18F-NaFPET/CT
A. Piccardo
1   Nuclear Medicine Department, Galliera Hospital, Genoa, Italy
,
M. Puntoni
2   Clinical Trial Research Unit, Galliera Hospital, Genoa, Italy
,
S. Morbelli
3   Nuclear Medicine Department, IRCCS San Martino-IST, Genoa, Italy
,
M. Massollo
1   Nuclear Medicine Department, Galliera Hospital, Genoa, Italy
,
F. Bongioanni
3   Nuclear Medicine Department, IRCCS San Martino-IST, Genoa, Italy
,
F. Paparo
4   Radiology Department, Galliera Hospital, Genoa, Italy
,
V. Altrinetti
1   Nuclear Medicine Department, Galliera Hospital, Genoa, Italy
,
R. Gonella
5   Department of Internal Medicine, IRCCS San Martino-IST, Genoa, Italy
,
A. Gennari
6   Department of Oncology, Galliera Hospital, Genoa, Italy
,
M. Iacozzi
1   Nuclear Medicine Department, Galliera Hospital, Genoa, Italy
,
G. Sambuceti
3   Nuclear Medicine Department, IRCCS San Martino-IST, Genoa, Italy
,
A. DeCensi
6   Department of Oncology, Galliera Hospital, Genoa, Italy
› Author Affiliations
Further Information

Publication History

received: 26 February 2015

accepted in revised form: 26 May 2015

Publication Date:
28 December 2017 (online)

Summary

Aim: To compare 18F-FDG PET/CT and 18F-NaF PET/CT with respect to disease prognostication and outcome in patients affected by bone metastases from breast cancer (BC). Patients, methods: We retrospectively investigated 32 women with BC and documented bone metastases. Semi-quantitative parameters were applied to 18F-FDG PET/CT and 18F-Na PET/CT in order to evaluate disease extent and tumour metabolism. We used time-to-event analyses (Kaplan Meier and COX proportional hazard methods) to estimate progression-free (PFS) and overall survival (OS) in order to assess the independent prognostic value of 18F-FDG PET/CT and 18F-Na PET/CT. Results: The sensitivity of 18F-NaF PET/CT (100%) was higher (p < 0.05) than that of 18F-FDG PET/CT (72% and 72%). None of the 18F-FDG PET/CT-negative patients showed disease progression at the end of follow-up. After adjustment for age, Ki-67 levels, presence of visceral metastases, hormone therapy, duration of bone disease and response to first-line therapy, only 18F-FDG SUV mean [HR 15.7, 95% confidence interval (CI) 1.15-214.5] and 18F-FDG whole-body bone metabolic burden (WB-B-MB) (HR 16.9; 95%CI 1.87-152.2) were independently and significantly associated with OS. None of the 18F-NaF PET/CT parameters were associated with OS. None of the conventional clinical prognostic parameters remained significantly associated with OS after the inclusion of PET/ CT parameters in the model. Conclusion: 18F-FDG PET/CT is independently associated with OS in BC patients with bone metastases and its prognostic impact seems to be higher than conventional clinical and biological prognostic factors. Although 18F-NaF PET/CT has a higher diagnostic sensitivity than 18F-FDG PET/ CT, it is not independently associated with OS.

Zusammenfassung

Ziel: Der Vergleich von F-FDG-PET/CT und F-NaF-PET/CT in Bezug auf Krankheitsprognose und -ausgang bei Patientinnen mit Brustkrebs (BK), die von Knochenmetastasen betroffen sind. Wir haben rückwirkend 32 Frauen mit Brustkrebs und nachgewiesenen Knochenmetastasen untersucht. Semiquantitative Parameter wurden auf F-FDG-PET/CT und F-NaF-PET/CT angewandt, um das Krankheitsausmaß und den Tumorstoffwechsel zu evaluieren. Hierfür verwendeten wir die Ereigniszeitanalyse (time-to-event-analyse) – (Kaplan Meier und COX proportionale Hazard- Methode) um die progressionsfreie Überlebenszeit und Gesamtüberlebenszeit einzuschätzen und den unabhängig prognostischen Wert von F-FDG-PET/CT und NaF-PET/ CT beurteilen zu können. Ergebnisse: Die Empfindlichkeit von F-NaF-PET/CT (100%) war höher (p < 0,05) als die der F-FDG-PET/ CT (72% und 72%). Keiner der F-FDG-PET/ CT-negativen Patienten zeigte eine Krankheitsprogression bis zum Ende der Verlaufskontrolle. Nach dem Bereinigen der Daten für Faktoren wie Alter, Ki-67-Level, Präsenz viszeraler Metastasen, Hormontherapie, Dauer der Knochenerkrankung und Ansprechen auf die Erstbehandlung konnten nur der F-FDG-SUVMittelwert (HR 15,7, 95% Konfidenzintervall 1,15–214,5) und die 18F-FDG-Ganzkörpermetabolische Knochenbelastung (WB-B-MB) (HR 16,9, 95% KI 1,87–152,2) in unabhängiger und erheblicher Weise mit der Gesamtüberlebenszeit in Verbindung gebracht werden. Keiner der F-NaF-PET/CT-Parameter konnte mit der Gesamtüberlebenszeit assoziiert werden. Keiner der konventionellen klinischen Prognoseparameter konnte nach Einbeziehung der PET/CT-Parameter in das Modell weiterhin signifikant mit der Gesamtüberlebenszeit in Zusammenhang gebracht werden. Schlussfolgerungen: F-FDG-PET/CT ist unabhängig mit der Gesamtüberlebenszeit von Brustkrebspatientinnen mit Knochenmetastasen assoziierbar und seine prognostische Bedeutung scheint höher zu sein, als die von konventionellen klinischen und biologischen Prognosefaktoren. Obwohl der F-NaF-PET/CT eine höhere Diagnosesensibilität als F-FDG-PET/CT aufweist, ist er nicht unabhängig assoziierbar mit der Gesamtüberlebenszeit.

 
  • References

  • 1 Al-Sarraf N. et al. Clinical implication and prognostic significance of standardised uptake value of primary non-small cell lung cancer on positron emission tomography: analysis of 176 cases. Eur J Cardiothorac Surg 2008; 34: 892-897.
  • 2 Basu S. et al. Comparison of triple-negative and estrogen receptor positive/progesterone receptor-positive/HER2-negative breast carcinoma using quantitative fluorine-18 fluorodeoxyglucose/ positron emission tomography imaging parameters: a potentially useful method for disease characterization. Cancer 2008; 112: 995-1000.
  • 3 Bogaerts J. et al. RECIST Working Party. Individual patient data analysis to assess modifications to the RECIST criteria. Eur J Cancer 2009; 45: 248-260.
  • 4 Bonanni B. et al. Dual effect of metformin on breast cancer proliferation in a randomized presurgical trial. J Clin Oncol 2012; 30: 2593-2600.
  • 5 Cheng G, Kwee TC, Basu S, Alavi A. Critical considerations on the combined use of 18F-FDG and 18F-fluoride for PET assessment of metastatic bone disease. Eur J Nucl Med Mol Imaging 2013; 40: 1141-1145.
  • 6 Cook GJ, Houston S, Rubens R. et al. Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol 1998; 16: 3375-3379.
  • 7 Eisenhauer EA. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009; 45: 228-247.
  • 8 Erdi YE, Mawlawi O, Larson SM. et al. Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer 1997; 80: 2505-2509.
  • 9 Fiebrich HB. et al. 6-[F-18]Fluoro-L-dihydroxyphenylalanine positron emission tomography is superior to conventional imaging with 123I-metaiodobenzylguanidine scintigraphy, computer tomography, and magnetic resonance imaging in localizing tumors causing catecholamine excess. J Clin Endocrinol Metab 2009; 94: 3922-3930.
  • 10 Gennari A, Piccardo A, Altrinetti V. et al. Whither the PET scan? The role of PET imaging in the staging and treatment of breast cancer. Curr Oncol Rep 2012; 14: 20-26.
  • 11 Groheux D. et al. Correlation of high 18F-FDG uptake to clinical, pathological and biological prognostic factors in breast cancer. Eur J Nucl Med Mol Imaging 2011; 38: 426-435.
  • 12 Hoegerle S, Juengling F, Otte A. et al. Combined FDG and [F-18]fluoride whole-body PET: a feasible two-in-one approach to cancer imaging?. Radiology 1998; 209: 253-258.
  • 13 Huyge V, Garcia C, Vanderstappen A. et al. Progressive osteoblastic bone metastases in breast cancer negative on FDG-PET. Clin Nucl Med 2009; 34: 417-420.
  • 14 Hyun SH. et al. Prognostic value of metabolic tumor volume measured by 18F-fluorodeoxyglucose positron emission tomography in patients with esophageal carcinoma. Ann Surg Oncol 2010; 17: 115-122.
  • 15 Iagaru A. et al. Novel strategy for a cocktail 18F-fluoride and 18F-FDG PET/ CT scan for evaluation of malignancy: results of the pilot-phase study. J Nucl Med 2009; 50: 501-505.
  • 16 Iagaru A, Mittra E, Dick DW, Gambhir SS. Prospective evaluation of 99mTc MDP scintigraphy, 18F NaF PET/CT, and 18F FDG PET/CT for detection of skeletal metastases. Mol Imaging Biol 2012; 14: 252-259.
  • 17 Larson SM. et al. Tumor treatment response based on visual and quantitative changes in global tumor glycolysis using PET-FDG imaging. The visual response score and the change in total lesion glycolysis. Clin Positron Imaging 1999; 2: 159-171.
  • 18 Lewington V. et al. Development of a semi-quantitative I-123 mIBG reporting method in high risk neuroblastoma. J Nucl Med 2009; 50: 1379.
  • 19 Lin FI. et al. Prospective comparison of combined 18F-FDG and 18F-NaF PET/CT vs. 18F-FDG PET/CT imaging for detection of malignancy. Eur J Nucl Med Mol Imaging 2012; 39: 262-270.
  • 20 Liu T, Xu JY, Xu W. et al. Fluorine-18deoxyglucose positron emission tomography,magnetic resonance imaging and bone scintigraphy for the diagnosis of bone metastases in patients with lung cancer: which one is the best? A meta-analysis. Clin Oncol 2011; 23: 350-358.
  • 21 Morris PG. et al. Standardized uptake value by positron emission tomography/computed tomography as a prognostic variable in metastatic breast cancer. Cancer 2012; 118: 5454-5462.
  • 22 Morris PG, McArthur HL, Hudis CA. Therapeutic options for metastatic breast cancer. Expert Opin Pharmacother 2009; 10: 967-981.
  • 23 Nakai T, Okuyama C, Kubota T. et al. Pitfalls of FDG-PET for the diagnosis of osteoblastic bone metastases in patients with breast cancer. Eur J Nucl Med Mol Imaging 2005; 32: 1253-1258.
  • 24 Park JC. et al. Predictive value of pretreatment metabolic activity measured by fluorodeoxyglucose positron emission tomography in patients with metastatic advanced gastric cancer: the maximal SUV of the stomach is a prognostic factor. Eur J Nucl Med Mol Imaging 2012; 39: 1107-1116.
  • 25 Piccardo A. et al. Detection of metastatic bone lesions in breast cancer patients: fused 18F-fluoride-PET/MDCT has higher accuracy than MDCT. Preliminary experience. Eur J Radiol 2012; 81: 2632-2638.
  • 26 Piccardo A. et al. Prognostic value of18F-DOPA PET/CT at the time of recurrence in patients affected by neuroblastoma. Eur J Nucl Med Mol Imaging 2014; 41: 1046-1056.
  • 27 Robbins RJ. et al. Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J Clin Endocrinol Metab 2006; 91: 498-505.
  • 28 Schirrmeister H. et al. Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18F PET. J Nucl Med 1999; 40: 1623-1629.
  • 29 Tchou J. et al. Degree of tumor FDG uptake correlates with proliferation index in triple negative breast cancer. Mol Imaging Biol 2010; 12: 657-662.
  • 30 Ueda S. et al. Clinicopathological and prognostic relevance of uptake level using 18F-fluorodeoxyglucose positron emission tomography/computed tomography fusion imaging (18F-FDG PET/CT) in primary breast cancer. Jpn J Clin Oncol 2008; 38: 250-258.
  • 31 Ulaner GA. et al. Prognostic value of quantitative fluorodeoxyglucose measurements in newly diagnosed metastatic breast cancer. Cancer Med 2013; 2: 725-733.
  • 32 Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324: 1029-1033.
  • 33 Veit-Haibach P. et al. FDG-PET/CT in restaging of patients with recurrent breast cancer: possible impact on staging and therapy. Br J Radiol 2007; 80: 508-515.