Methods Inf Med 2013; 52(04): 340-350
DOI: 10.3414/ME12-02-0012
Focus Theme – Original Articles
Schattauer GmbH

Suitability of Customer Relationship Management Systems for the Management of Study Participants in Biomedical Research

J. Schwanke
1   University Medical Center Göttingen, Georg-August-University, Department of Medical Informatics, Göttingen, Germany
,
O. Rienhoff
1   University Medical Center Göttingen, Georg-August-University, Department of Medical Informatics, Göttingen, Germany
,
T. G. Schulze
2   University Medical Center Göttingen, Georg-August-University, Department of Psychiatry and Psychotherapy, Göttingen, Germany
,
S. Y. Nussbeck
1   University Medical Center Göttingen, Georg-August-University, Department of Medical Informatics, Göttingen, Germany
› Author Affiliations
Further Information

Publication History

received: 29 November 2012

accepted: 15 April 2013

Publication Date:
20 January 2018 (online)

Summary

Background: Longitudinal biomedical research projects study patients or participants over a course of time. No IT solution is known that can manage study participants, enhance quality of data, support re-contacting of participants, plan study visits, and keep track of informed consent procedures and recruitments that may be subject to change over time.. In business settings management of personal is one of the major aspects of customer relationship management systems (CRMS).

Objectives: To evaluate whether CRMS are suitable IT solutions for study participant management in biomedical research.

Methods: Three boards of experts in the field of biomedical research were consulted to get an insight into recent IT developments regarding study participant management systems (SPMS). Subsequently, a requirements analysis was performed with stake-holders of a major biomedical research project. The successive suitability evaluation was based on the comparison of the identified requirements with the features of six CRMS.

Results: Independently of each other, the interviewed expert boards confirmed that there is no generic IT solution for the management of participants. Sixty-four requirements were identified and prioritized in a requirements analysis. The best CRMS was able to fulfill forty-two of these requirements. The non-fulfilled requirements demand an adaption of the CRMS, consuming time and resources, reducing the update compatibility, the system’s suitability, and the security of the CRMS.

Conclusions: A specific solution for the SPMS is favored instead of a generic and commercially-oriented CRMS. Therefore, the development of a small and specific SPMS solution was commenced and is currently on the way to completion.

 
  • References

  • 1 Wichmann H, Kaaks R, Hoffmann W, Jöckel K, Greiser K, Linseisen J. Die Nationale Kohorte. Bundesgesundheitsblatt 2012; 55 6–7 781-789.
  • 2 Sullivan PF. The Psychiatric GWAS Consortium: Big Science Comes to Psychiatry. Neuron 2010; 68 (02) 182-186.
  • 3 Becker R, Ihle P, Pommerening K, Harnischmacher U. Ein generisches Datenschutzkonzept für Biomaterialbanken; 2006 (cited Nov 25, 2012). Available from. http://www.tmf-ev.de/Produkte/Uebersicht.aspx#P010021.
  • 4 Pommerening K. Das Datenschutzkonzept der TMF für Biomaterialbanken (The TMF Data Protection Scheme for Biobanks). Information Technology 2007; 49 (06) 352-359.
  • 5 Demiroglu SY, Skrowny D, Quade M, Schwanke J, Budde M, Gullatz V. et al Managing sensitive phenotypic data and biomaterial in large-scale collaborative psychiatric genetic research projects: practical considerations. Molecular psychiatry 2012; 17 (12) 1180-1185.
  • 6 Faldum A, Pommerening K. An optimal code for patient identifiers. Computer Methods and Programs in Biomedicine 2005; 79 (01) 81-88.
  • 7 Reng C, Pommerening K, Specker C, Debold P. Generische Lösungen der TMF zum Datenschutz für die Forschungsnetze in der Medizin. Berlin: Medizinisch Wissenschaftliche Verlagsgesellschaft; 2006.
  • 8 Pommerening K, Sax U, Müller T, Speer R, Ganslandt T, Drepper J. et al Integrating eHealth and medical research: The TMF data protection scheme. In: EHealth: Combining Health Telematics, Telemedicine, Biomedical Engineering and Bioinformatics to the Edge: CeHR Conference Proceedings 2007. Berlin: Akademische Verlagsgesellschaft Aka GmbH; 2008: 5-10.
  • 9 Heinze O, Birkle M, Köster L, Bergh B. Architecture of a consent management suite and integration into IHE-based regional health information networks. BMC Medical Informatics and Decision Making 2011; 11 (01) 58-68.
  • 10 El Fadly A, Rance B, Lucas N, Mead C, Chatellier G, Lastic P. et al Integrating clinical research with the Healthcare Enterprise: From the RE-USE project to the EHR4CR platform. Journal of Biomedical Informatics 2011; 44 (01) 94-102.
  • 11 Reineke A, Voss SK, Asendorf H. Modys - ein modulares Steuerungs- und Dokumentationssystem für epidemiologische Studien. In: Medizinische Dokumentation - wichtig oder nichtig? Tagungsband. Reichenbach/Vogtland: Alius; 2006.
  • 12 Haux R, Winter A, Ammenwerth E, Brigl B. Strategic Information Management in Hospitals: An Introduction to Hospital Information Systems. New York: Springer; 2004.
  • 13 Corner I, Hinton M. Customer relationship management systems: implementation risks and relationship dynamics. Qualitative Market Research: An International Journal 2002; 5 (04) 239-251.
  • 14 Bose R. Customer relationship management: key components for IT success. Industrial Management Data Systems 2002; 102 (02) 89-97.
  • 15 TMF e.V. IT Infrastructure and Quality Management Working Group; 2013 (cited Feb 18, 2013). Available from. http://www.tmf-ev.de/EnglishSite/WorkingGroups/ITinfrastructureandqualitymanagement.aspx.
  • 16 TMF e.V. Data Protection Working Group; 2013 (cited Feb 18, 2013). Available from. http://www.tmf-ev.de/EnglishSite/WorkingGroups/Dataprotectionworkinggroup.aspx.
  • 17 Pohl K. Requirements engineering: Fundamentals, principles, and techniques. Heidelberg, New York: Springer; 2010.
  • 18 Robertson S, Robertson J. Mastering the requirements process. 2nd ed. Upper Saddle River, NJ: Addison-Wesley; 2006.
  • 19 Kalra D, Singleton P, Milan J, Mackay J, Detmer D, Rector A. et al Security and confidentiality approach for the Clinical E-Science Framework (CLEF). Methods Inf Med 2005; 44 (02) 193-197.
  • 20 Langella S, Oster S, Hastings S, Siebenlist F, Phillips J, Ervin D. et al The Cancer Biomedical Informatics Grid (caBIG) Security Infrastructure. AMIA Annual Symposium Proceedings. 2007: 433-437.
  • 21 Helbing K, Demiroglu SY, Rakebrandt F, Pommerening K, Rienhoff O, Sax U. A Data Protection Scheme for Medical Research Networks. Review after five years of operation. Methods Inf Med 2010; 49 (06) 601-607.
  • 22 Demiroglu SY, Quade M, Schwanke J, Gusky L, Skrowny D, Schulze TG. Datenschutzkonzept für die Klinische Forschergruppe 241; 2012 (cited Mar 8, 2013). Available from. http://www.kfo241.de/materials/20120718_datenschutzkonzept.pdf.
  • 23 Kano N, Seraku N, Takahashi F, Tsuji S. Attractive Quality and Must-Be Quality. The Journal of the Japanese Society for Quality Control 1984; 14 (02) 39-48.
  • 24 Berger C, Blauth R, Boger D, Bolster C, Burchill G, DuMouchel W. et al Kano’s Methods for Understanding Customer-defined Quality. Center for Quality Management Journal 1993; 2 (04) 3-35.
  • 25 TMF e.V. V039–01 WS DS-Review; 2012 (cited Mar 1, 2013). Available from. http://www.tmf-ev.de/Themen/Projekte/V039_01_WS_DS_Review.aspx.
  • 26 Koch R. Living the 80/20 way: Work less, worry less, create more, enjoy more. London: Nicholas Brealey; 2004.