Methods Inf Med 2017; 56(02): 138-144
DOI: 10.3414/ME16-02-0004
REHAB
Schattauer GmbH

The Effect of Balance Training on Postural Control in Patients with Parkinson’s Disease Using a Virtual Rehabilitation System

Sergio Albiol-Pérez*
1   Aragón Health Research Institute (IIS Aragón), Universidad de Zaragoza, Teruel, Spain
,
José-Antonio Gil-Gómez*
2   Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València Valencia, Spain
,
Maria-Teresa Muñoz-Tomás*
1   Aragón Health Research Institute (IIS Aragón), Universidad de Zaragoza, Teruel, Spain
3   Hospital S. José, Teruel, Spain
,
Hermenegildo Gil-Gómez*
2   Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València Valencia, Spain
,
Raquel Vial-Escolano*
1   Aragón Health Research Institute (IIS Aragón), Universidad de Zaragoza, Teruel, Spain
3   Hospital S. José, Teruel, Spain
,
José-Antonio Lozano-Quilis*
2   Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València Valencia, Spain
› Author Affiliations
Funding: This contribution was partially funded by the Gobierno de Aragón, Departamento de Industria e Innovación, y Fondo Social Europeo “Construyendo Europa desde Aragón” and by the Programa Ibercaja-CAI de Estancias de Investigación.
Further Information

Publication History

received: 05 March 2016

accepted: 07 February 2017

Publication Date:
25 January 2018 (online)

Summary

Objectives: Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by motor clinical alterations among others. Postural problems have serious consequences for patients, not only limiting their daily life but also increasing some risks, like the risk of fall. Inadequate postural control and postural instability is a major problem in PD patients. A Virtual Motor Rehabilitation System (VMR) has been tested in patients with PD in the intervention period. Our purpose was to analyze the evolution of the spatial postural control during the intervention period, to see if there are any changes caused precisely by this intervention.

Methods: Ten people with PD carried out 15 virtual rehabilitation sessions. We tested a groundbreaking system based on Virtual Motor Rehabilitation in two periods of time (baseline evaluation and final evaluation). In the training sessions, the participants performed a customizable treatment using a low-cost system, the Active Balance Rehabilitation system (ABAR). We stored the pressure performed by the participants every five hundredths of a second, and we analyzed the patients’ pressure when they maintained their body on the left, on the right, and in the center in sitting position. Our system was able to measure postural control in every patient in each of the virtual rehabilitation sessions.

Results: There are no significant differences in the performance of postural control in any of the positions evaluated throughout the sessions. Moreover, the results show a trend to an improvement in all positions. This improvement is especially remarkable in the left/right positions, which are the most important positions in order to avoid problems such as the risk of fall. With regard to the suitability of the ABAR system, we have found outstanding results in enjoyment, success, clarity, and helpfulness.

Conclusions: Although PD is a progressive neurodegenerative disorder, the results demonstrate that patients with PD maintain or even improve their postural control in all positions. We think that the main factor influencing these results is that patients use more of their available cognitive processing to improve their postural control. The ABAR system allows us to make this assumption because the system requires the continuous attention of patients, promoting cognitive processing.

* These authors contributed equally to this work


 
  • References

  • 1 Schwartze M, Kotz SA. Regional Interplay for Temporal Processing in Parkinson’s Disease: Possibilities and Challenges. Front Neurol. 2016; 6: 270.
  • 2 Nussbaum RL, Ellis CE. Alzheimer’s disease and Parkinson’s disease. N Engl J Med. 2003; 348 (14) 1356-1364 Erratum In: N Engl J Med. 2003; 348(25): 2588.
  • 3 Pringsheim T, Jette N, Frolkis A, Steeves TD. The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord. 2014; 29 (13) 1583-1590.
  • 4 de Lau LM, Breteler MM. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006; 5 (06) 525-535.
  • 5 King LA, Priest KC, Nutt J, Chen Y, Chen Z, Melnick M, Horak F. Comorbidity and functional mobility in persons with Parkinson disease. Arch Phys Med Rehabil. 2014; 95 (11) 2152-2157.
  • 6 von Campenhausen S, Bornschein B, Wick R, Bötzel K, Sampaio C, Poewe W, Oertel W, Siebert U, Berger K, Dodel R. Prevalence and incidence of Parkinson’s disease in Europe. Eur Neuropsychopharmacol. 2005; 15 (04) 473-490.
  • 7 Muangpaisan W, Hori H, Brayne C. Systematic review of the prevalence and incidence of Parkinson’s disease in Asia. J Epidemiol. 2009; 19 (06) 281-293.
  • 8 Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, Kieburtz K, Marshall FJ, Ravina BM, Schifitto G, Siderowf A, Tanner CM. Projected number of people with Parkinson’s disease in the most populous nations, 2005 through 2030. Neurology. 2007; 68 (05) 384-386.
  • 9 Chaudhuri KR, Odin P, Antonini A, Martinez-Martin P. Parkinson’s disease: the non-motor issues. Parkinsonism Relat Disord. 2011; 17 (10) 717-723.
  • 10 Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry. 2008; 79 (04) 368-376.
  • 11 Weintraub D, Moberg PJ, Duda JE, Katz IR, Stern MB. Effect of psychiatric and other nonmotor symptoms on disability in Parkinson’s disease. J Am Geriatr Soc. 2004; 52 (05) 784-788.
  • 12 Ondo WG, Dat Vuong K, Khan H, Atassi F, Kwak C, Jankovic J. Daytime sleepiness and other sleep disorders in Parkinson’s disease. Neurology. 2001; 57 (08) 1392-1396.
  • 13 Shulman LM, Taback RL, Bean J, Weiner WJ. Co-morbidity of the nonmotor symptoms of Parkinson’s disease. Mov Disord. 2001; 16 (03) 507-510.
  • 14 Nolano M, Provitera V, Estraneo A, Selim MM, Caporaso G, Stancanelli A, Saltalamacchia AM, Lanzillo B, Santoro L. Sensory deficit in Parkinson’s disease: evidence of a cutaneous denervation. Brain. 2008; 131 (Pt 7): 1903-1911.
  • 15 Micieli G, Tosi P, Marcheselli S, Cavallini A. Autonomic dysfunction in Parkinson’s disease. Neurol Sci. 2003; 24 (Suppl. 01) S32-34.
  • 16 Salat-Foix D, Suchowersky O. The management of gastrointestinal symptoms in Parkinson’s disease. Expert Rev Neurother. 2012; 12 (02) 239-248.
  • 17 Nombela C, Bustillo PJ, Castell PF, Sanchez L, Medina V, Herrero MT. Cognitive Rehabilitation in Parkinson’s disease: Evidence from Neuroimaging. Frontiers in Neurology. 2011; 2: 82.
  • 18 Poletti M, De Rosa A, Bonuccelli U. Affective symptoms and cognitive functions in Parkinson’s disease. J Neurol Sci. 2012; 317 1-2 97-102.
  • 19 Kashihara K. Weight loss in Parkinson’s disease. J Neurol. 2006; 253 (Suppl. 07) VII38-41.
  • 20 Fahn S. Description of Parkinson’s disease as a clinical syndrome. Ann N Y Acad Sci. 2003; 991: 1-14.
  • 21 Crawford P, Zimmerman EE. Differentiation and diagnosis of tremor. Am Fam Physician. 2011; 83 (06) 697-702.
  • 22 Camara C, Isasi P, Warwick K, Ruiz V, Aziz T, Stein J, Baktein E. Resting tremor classification and detection in Parkinson’s disease patients. Biomed Signal Process Control. 2015; 16 (00) 88-97.
  • 23 Deuschl G, Bain P, Brin M. Consensus statement of the Movement Disorder Society on Tremor. Ad Hoc Scientific Committee. Mov Disord. 1998; 13: 2-23.
  • 24 Massano J, Bhatia KP. Clinical approach to Parkinson’s disease: features, diagnosis, and principles of management. Cold Spring Harb Perspect Med. 2012; 2 (06) a008870.
  • 25 Salarian A, Russmann H, Wider C, Burkhard PR, Vingerhoets FJ, Aminian K. Quantification of tremor and bradykinesia in Parkinson’s disease using a novel ambulatory monitoring system. IEEE Trans Biomed Eng. 2007; 54 (02) 313-322.
  • 26 Dai H, Zhang P, Lueth TC. Quantitative Assessment of Parkinsonian Tremor Based on an Inertial Measurement Unit. Sensors (Basel). 2015; 15 (10) 25055-25071.
  • 27 Findley LJ, Gresty MA, Halmagyi GM. Tremor, the cogwheel phenomenon and clonus in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1981; 44 (06) 534-546.
  • 28 Berardelli A, Rothwell JC, Thompson PD, Hallett M. Pathophysiology of bradykinesia in Parkinson’s disease. Brain. 2001; 124 (11) 2131-2146.
  • 29 Bronnick K, Ehrt U, Emre M, De Deyn PP, Wesnes K, Tekin S, Aarsland D. Attentional deficits affect activities of daily living in dementia-associated with Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2006; 77 (10) 1136-1142.
  • 30 Horak FB. Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls?. Age Ageing. 2006; 35 (Suppl. 02) ii7-ii11.
  • 31 Movement Disorder Society Task Force on Rating Scales for Parkinson’s Disease. The Unified Parkinson’s Disease Rating Scale (UPDRS): status and recommendations. Mov Disord. 2003; 18 (07) 738-750 Available from: http://img.medscape.com/fullsize/701/816/58977_UPDRS.pdf.
  • 32 Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P. et al. Movement Disorder Society UPDRS Revision Task Force. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008; 23 (15) 2129-2170.
  • 33 Budzianowska A, Honczarenko K. Assessment of rest tremor in Parkinson’s disease. Polish J Neurol Neurosurg. 2008; 42: 12-21.
  • 34 Dibble LE, Hale TF, Marcus RL, Gerber JP, LaStayo PC. High intensity eccentric resistance training decreases bradykinesia and improves Quality Of Life in persons with Parkinson’s disease: a preliminary study. Parkinsonism Relat Disord. 2009; 15 (10) 752-757.
  • 35 Dibble LE, Hale TF, Marcus RL, Droge J, Gerber JP, LaStayo PC. High-intensity resistance training amplifies muscle hypertrophy and functional gains in persons with Parkinson’s disease. Mov Disord. 2006; 21 (09) 1444-1452.
  • 36 McIntosh GC, Brown SH, Rice RR, Thaut MH. Rhythmic auditory-motor facilitation of gait patterns in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1997; 62 (01) 22-26.
  • 37 Deane KH, Jones D, Playford ED, Ben-Shlomo Y, Clarke CE. Physiotherapy for patients with Parkinson’s Disease: a comparison of techniques. Cochrane Database Syst Rev. 2001 (3): CD002817.
  • 38 Albiol-Pérez S, Lozano-Quilis JA, Gil-Gómez H, Gil-Gómez JA, Llorens R. Virtual rehabilitation system for people with Parkinson disease. 9th Intl Conf. Disability, Virtual Reality & Associated Technologies. Laval, France: 2012
  • 39 dos Santos Mendes FA, Pompeu JE, Modenesi Lobo A, Guedes da Silva K, Oliveira Tde P, Peterson Zomignani A, Pimentel Piemonte ME. Motor learning, retention and transfer after virtual-reality-based training in Parkinson’s disease - effect of motor and cognitive demands of games: a longitudinal, controlled clinical study. Physiotherapy. 2012; 98 (03) 217-223.
  • 40 Saposnik G, Levin M. Outcome Research Canada (SORCan) Working Group. Virtual reality in stroke rehabilitation: a meta-analysis and implications for clinicians. Stroke. 2011; 42 (05) 1380-1386.
  • 41 Lozano-Quilis JA, Gil-Gómez H, Gil-Gómez JA, Albiol-Pérez S, Palacios-Navarro G, Fardoun HM, Mashat AS. Virtual rehabilitation for multiple sclerosis using a kinect-based system: randomized controlled trial. JMIR Serious Games. 2014; 2 (02) e12.
  • 42 Badarny S, Aharon-Peretz J, Susel Z, Habib G, Baram Y. Virtual reality feedback cues for improvement of gait in patients with Parkinson’s disease. Tremor Other Hyperkinet Mov (N Y). 2014; Apr; 4: 225.
  • 43 Ehgoetz Martens KA, Ellard CG, Almeida QJ. Does manipulating the speed of visual flow in virtual reality change distance estimation while walking in Parkinson’s disease?. Exp Brain Res. 2015; 233 (03) 787-795.
  • 44 Albiol-Pérez S, Gil-Gómez JA, Llorens R, Alcañiz M, Font CC. The role of virtual motor rehabilitation: a quantitative analysis between acute and chronic patients with acquired brain injury. IEEE J Biomed Health Inform. 2014; 18 (01) 391-398.
  • 45 Albiol-Pérez S, Forcano-García M, Muñoz-Tomás MT, Manzano-Fernández P, Solsona-Hernández S, Mashat MA, Gil-Gómez JA. A novel virtual motor rehabilitation system for Guillain-Barré syndrome. Two single case studies. Methods Inf Med. 2015; 54 (02) 127-134.
  • 46 Gil-Gómez JA, Lloréns R, Alcañiz M, Colomer C. Effectiveness of a Wii balance board-based system (eBaViR) for balance rehabilitation: a pilot randomized clinical trial in patients with acquired brain injury. J Neuroeng Rehabil. 2011; 8: 30.
  • 47 Muñoz Tomás MT, Gil-Gómez JA, Gil-Gómez H, Lozano-Quillis JA, Albiol-Pérez S, Forcano-García M. Suitability of virtual rehabilitation for the elderly: A study of a virtual rehabilitation system using the SEQ. European Geriatric Medicine. 2013; 4 (01) S109.
  • 48 Pompeu JE, Mendes FA, Silva KG, Lobo AM, Oliveira Tde P, Zomignani AP, Piemonte ME. Effect of Nintendo WiiTM-based motor and cognitive training on activities of daily living in patients with Parkinson’s disease: a randomized clinical trial. Physiotherapy. 2012; 98 (03) 196-204.
  • 49 Pompeu JE, Arduini LA, Botelho AR, Fonseca MB, Pompeu SM, Torriani-Pasin C, Deutsch JE. Feasibility, safety and outcomes of playing Kinect Adventures!TM for people with Parkinson’s disease: a pilot study. Physiotherapy. 2014; 100 (02) 162-168.
  • 50 Summa S, Basteris A, Betti E, Sanguineti V. A feasibility study on using kinect for the rehabilitation in persons with Parkinson’s disease. Gait & Posture. 2013; 37 (Suppl. 01) S15.
  • 51 Herz NB, Mehta SH, Sethi KD, Jackson P, Hall P, Morgan JC. Nintendo Wii rehabilitation (“Wii-hab”) provides benefits in Parkinson’s disease. Parkinsonism Relat Disord. 2013; 19 (11) 1039-1042.
  • 52 Holmes JD, Jenkins ME, Johnson AM, Hunt MA, Clark RA. Validity of the Nintendo Wii® balance board for the assessment of standing balance in Parkinson’s disease. Clin Rehabil. 2013; 27 (04) 361-366.
  • 53 Mhatre PV, Vilares I, Stibb SM, Albert MV, Pickering L, Marciniak CM, Kording K, Toledo S. Wii Fit balance board playing improves balance and gait in Parkinson disease. PM R. 2013; 5 (09) 769-777.
  • 54 Bächlin M, Plotnik M, Roggen D, Giladi N, Hausdorff JM, Tröster G. A wearable system to assist walking of Parkinson’s disease patients. Methods Inf Med. 2010; 49 (01) 88-95.
  • 55 Rigas G, Tzallas AT, Tsipouras MG, Bougia P, Tripoliti EE, Baga D, Fotiadis DI, Tsouli SG, Konitsiotis S. Assessment of tremor activity in the Parkinson’s disease using a set of wearable sensors. IEEE Trans Inf Technol Biomed. 2012; 16 (03) 478-487.
  • 56 Duval C. Rest and postural tremors in patients with Parkinson’s disease. Brain Res Bull. 2006; 70 (01) 44-48.
  • 57 The World Medical Association Ethics Unit. Declaration of Helsinki. Available from: http://www.wma.net/en/30publications/10policies/b3/.
  • 58 Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975; 12 (03) 189-198.
  • 59 Collin C, Wade DT, Davies S, Horne V. The Barthel ADL Index: a reliability study. Int Disabil Stud. 1988; 10 (02) 61-63.
  • 60 Lawton MP. The Philadelphia Geriatric Center Morale Scale: a revision. J Gerontol. 1975; 30 (01) 85-89.
  • 61 Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987; 40 (05) 373-383.
  • 62 Gil-Gómez JA, Manzano-Hernández P, Albiol-Pérez S, Aula-Valero C, Gil-Gómez H, Lozano-Quilis JA. SEQ: suitability evaluation questionnaire for virtual rehabilitation systems. Application in a virtual rehabilitation system for balance rehabilitation. Proceedings of the 7th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth ’13). 2013: 335-338.
  • 63 Kizony R, Katz N, Rand D, Weiss PL. A Short Feedback Questionnaire (SFQ) to enhance client-centered participation in virtual environments. 11th Annual Cyber Therapy Conference: Virtual Healing: Designing Reality. Gatineau, Canada: 2006
  • 64 Shapiro SS, Wilk MB. An analysis of variance test for normality (complete samples). Biometrika 1965; 52 3-4 591-611.
  • 65 Horak FB. Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls?. Age Ageing. 2006; 35 (Suppl. 02) ii7-ii11.
  • 66 Kim SD, Allen NE, Canning CG, Fung VS. Postural instability in patients with Parkinson’s disease. Epidemiology, pathophysiology and management. CNS Drugs. 2013; 27 (02) 97-112.
  • 67 Robbins TW, Cools R. Cognitive deficits in Parkinson’s disease: a cognitive neuroscience perspective. Mov Disord. 2014; 29 (05) 597-607.
  • 68 de Rijk MC, Tzourio C, Breteler MM, Dartigues JF, Amaducci L, Lopez-Pousa S, Manubens-Bertran JM, Alpérovitch A, Rocca WA. Prevalence of parkinsonism and Parkinson’s disease in Europe: the EUROPARKINSON Collaborative Study. European Community Concerted Action on the Epidemiology of Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1997; 62 (01) 10-15.