Subscribe to RSS
DOI: 10.1055/a-1122-8916
Stammzellen in der Regenerativen Medizin – Translationale Hürden und Möglichkeiten zur Überwindung
Stem cells in regenerative medicine – from bench to bedsideZusammenfassung
Der Einsatz von mesenchymalen Stammzellen in der regenerativen Medizin wird immer populärer. Nichtsdestotrotz ist ihre Anwendung im klinischen Alltag noch immer limitiert. Zahlreiche ethische, rechtliche und translationale Probleme sowie Ungewissheit bzgl. der Sicherheit hemmen noch immer die Entstehung von entsprechenden Therapien aus vielversprechenden wissenschaftlichen Ansätzen.
Diese Arbeit soll die Hauptprobleme bei der Translation von stammzellbasierten Therapien aus der Grundlagenforschung und Präklinik in den klinischen Alltag darstellen, sowie Ansätze aufzeigen, diese zu überwinden.
Abstract
The use of mesenchymal stem cells for regenerative medicine is becoming more popular than ever before – even though their clinical usage is limited. Many ethical and translational questions, as well as legal aspects and uncertainty regarding safety inhibit the growth of appropriate therapies from promising scientific approaches.
This paper demonstrates the main problems of the translation from stem cell based therapies from basic science towards their clinical use.
Publication History
Received: 29 September 2019
Accepted: 14 February 2020
Article published online:
07 April 2020
© Georg Thieme Verlag KG
Stuttgart · New York
-
Referenzen
- 1 Diez-Tejedor E, Gutierrez-Fernandez M, Martinez-Sanchez P. et al. Reparative therapy for acute ischemic stroke with allogeneic mesenchymal stem cells from adipose tissue: a safety assessment: a phase II randomized, double-blind, placebo-controlled, single-center, pilot clinical trial. Journal of stroke and cerebrovascular diseases: the official journal of National Stroke Association 2014; 23 (10) 2694-700
- 2 Yu X, Chen D, Zhang Y. et al. Overexpression of CXCR4 in mesenchymal stem cells promotes migration, neuroprotection and angiogenesis in a rat model of stroke. Journal of the neurological sciences 2012; 316 1–2 141-9
- 3 Miao C, Lei M, Hu W. et al. A brief review: the therapeutic potential of bone marrow mesenchymal stem cells in myocardial infarction. Stem Cell Res Ther 2017; 8 (01) 242
- 4 Mizuno H, Tobita M, Uysal AC. Concise review: adipose-derived stem cells as a novel tool for future regenerative medicine. Stem cells 2012; 30 (05) 804-10
- 5 Duscher D, Barrera J, Wong VW. et al. Stem Cells in Wound Healing: The Future of Regenerative Medicine? A Mini-Review. Gerontology 2016; 62 (02) 216-25
- 6 Falanga V, Iwamoto S, Chartier M. et al. Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng 2007; 13 (06) 1299-312
- 7 Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends in molecular medicine 2001; 7 (06) 259-64
- 8 DiMarino AM, Caplan AI, Bonfield TL. Mesenchymal stem cells in tissue repair. Frontiers in immunology 2013; 4: 201
- 9 Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. Journal of cellular physiology 2007; 213 (02) 341-7
- 10 Bajada S, Mazakova I, Richardson JB. et al. Updates on stem cells and their applications in regenerative medicine. Journal of tissue engineering and regenerative medicine 2008; 2 (04) 169-83
- 11 Weissman IL. Stem cells: units of development, units of regeneration, and units in evolution. Cell 2000; 100 (01) 157-68
- 12 Hall PA, Watt FM. Stem cells: the generation and maintenance of cellular diversity. Development 1989; 106 (04) 619-33
- 13 Roobrouck VD, Ulloa-Montoya F, Verfaillie CM. Self-renewal and differentiation capacity of young and aged stem cells. Experimental cell research 2008; 314 (09) 1937-44
- 14 Morrison SJ, Shah NM, Anderson DJ. Regulatory mechanisms in stem cell biology. Cell 1997; 88 (03) 287-98
- 15 Kim W-S, Park B-S, Sung J-H. et al. Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. Journal of dermatological science 2007; 48 (01) 15-24
- 16 Park HW, Shin JS, Kim CW. Proteome of mesenchymal stem cells. Proteomics 2007; 7 (16) 2881-94
- 17 Suga H, Glotzbach JP, Sorkin M. et al. Paracrine mechanism of angiogenesis in adipose-derived stem cell transplantation. Annals of plastic surgery 2014; 72 (02) 234-41
- 18 Mou S, Zhou M, Li Y. et al. Extracellular vesicles from human adipose-derived stem cells for the improvement of angiogenesis and fat-grafting application. Plastic and reconstructive surgery 2019; 144 (04) 869-80
- 19 Sun J, Zhang Y, Song X. et al. The healing effects of conditioned medium derived from mesenchymal stem cells on radiation-induced skin wounds in rats. Cell transplantation 2019; 28 (01) 105-15
- 20 Schaefer D, Klemt C, Zhang X. et al. Tissue engineering with mesenchymal stem cells for cartilage and bone regeneration. Der Chirurg; Zeitschrift fur alle Gebiete der operativen Medizen 2000; 71 (09) 1001-8
- 21 Ortiz LA, Gambelli F, McBride C. et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proceedings of the National Academy of Sciences 2003; 100 (14) 8407-11
- 22 Xin H, Sun R, Kanehira M. et al. Intratracheal delivery of CX3CL1-expressing mesenchymal stem cells to multiple lung tumors. Molecular Medicine 2009; 15 (09) 321
- 23 Wei L, Fraser JL, Lu Z-Y. et al. Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats. Neurobiology of disease 2012; 46 (03) 635-45
- 24 Rochefort GY, Delorme B, Lopez A. et al. Multipotential mesenchymal stem cells are mobilized into peripheral blood by hypoxia. Stem cells 2006; 24 (10) 2202-8
- 25 He Q, Wan C, Li G. Concise review: multipotent mesenchymal stromal cells in blood. Stem cells 2007; 25 (01) 69-77
- 26 Won YW, Patel AN, Bull DA. Cell surface engineering to enhance mesenchymal stem cell migration toward an SDF-1 gradient. Biomaterials 2014; 35 (21) 5627-35
- 27 Ghadge SK, Muhlstedt S, Ozcelik C. et al. SDF-1alpha as a therapeutic stem cell homing factor in myocardial infarction. Pharmacology & therapeutics 2011; 129 (01) 97-108
- 28 Erlandsson A, Larsson J, Forsberg-Nilsson K. Stem cell factor is a chemoattractant and a survival factor for CNS stem cells. Experimental cell research 2004; 301 (02) 201-10
- 29 Nitzsche F, Müller C, Lukomska B. et al. Concise review: MSC adhesion cascade—insights into homing and transendothelial migration. Stem Cells 2017; 35 (06) 1446-60
- 30 Palumbo R, Galvez BG, Pusterla T. et al. Cells migrating to sites of tissue damage in response to the danger signal HMGB1 require NF-kappaB activation. The Journal of cell biology 2007; 179 (01) 33-40
- 31 Rüster B, Göttig S, Ludwig RJ. et al. Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood 2006; 108 (12) 3938-44
- 32 Sackstein R, Merzaban JS, Cain DW. et al. Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nature medicine 2008; 14 (02) 181
- 33 Cheng Z, Ou L, Zhou X. et al. Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance. Molecular Therapy 2008; 16 (03) 571-9
- 34 Chen W, Li M, Cheng H. et al. Overexpression of the mesenchymal stem cell Cxcr4 gene in irradiated mice increases the homing capacity of these cells. Cell biochemistry and biophysics 2013; 67 (03) 1181-91
- 35 Marquez-Curtis LA, Gul-Uludag H, Xu P. et al. CXCR4 transfection of cord blood mesenchymal stromal cells with the use of cationic liposome enhances their migration toward stromal cell-derived factor-1. Cytotherapy 2013; 15 (07) 840-9
- 36 Wang Y, Deng Y, Zhou GQ. SDF-1alpha/CXCR4-mediated migration of systemically transplanted bone marrow stromal cells towards ischemic brain lesion in a rat model. Brain research 2008; 1195: 104-12
- 37 Chen J, Wei J, Huang Y. et al. Danhong Injection Enhances the Therapeutic Efficacy of Mesenchymal Stem Cells in Myocardial Infarction by Promoting Angiogenesis. Frontiers in physiology 2018; 9: 991
- 38 Xu X, Zhu F, Zhang M. et al. Stromal cell-derived factor-1 enhances wound healing through recruiting bone marrow-derived mesenchymal stem cells to the wound area and promoting neovascularization. Cells Tissues Organs 2013; 197 (02) 103-13
- 39 Yang D, Sun S, Wang Z. et al. Stromal cell-derived factor-1 receptor CXCR4-overexpressing bone marrow mesenchymal stem cells accelerate wound healing by migrating into skin injury areas. Cellular reprogramming 2013; 15 (03) 206-15
- 40 Liu N, Patzak A, Zhang J. CXCR4-overexpressing bone marrow-derived mesenchymal stem cells improve repair of acute kidney injury. American journal of physiology Renal physiology 2013; 305 (07) F1064-73
- 41 Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal stromal cells. Blood 2007; 110 (10) 3499-506
- 42 Maccario R, Podestà M, Moretta A. et al. Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4 + T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica 2005; 90 (04) 516-25
- 43 Rasmusson I, Ringdén O, Sundberg B. et al. Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation 2003; 76 (08) 1208-13
- 44 Jiang X-X, Zhang Y, Liu B. et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 2005; 105 (10) 4120-6
- 45 Corcione A, Benvenuto F, Ferretti E. et al. Human mesenchymal stem cells modulate B-cell functions. Blood 2006; 107 (01) 367-72
- 46 Spaggiari GM, Capobianco A, Becchetti S. et al. Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 2006; 107 (04) 1484-90
- 47 Sotiropoulou PA, Perez SA, Gritzapis AD. et al. Interactions between human mesenchymal stem cells and natural killer cells. Stem cells 2006; 24 (01) 74-85
- 48 Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses. Experimental hematology 2000; 28 (08) 875-84
- 49 Phinney DG, Prockop DJ. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair-current views. Stem cells 2007; 25 (11) 2896-902
- 50 Cherubino M, Marra KG. Adipose-derived stem cells for soft tissue reconstruction. Regenerative Medicine 2009; 4 (01) 109-117
- 51 Lucarelli E, Donati D, Cenacchi A. et al. Bone reconstruction of large defects using bone marrow derived autologous stem cells. Transfusion and apheresis science 2004; 30 (02) 169-74
- 52 Ma Y, Xu Y, Xiao Z. et al. Reconstruction of chemically burned rat corneal surface by bone marrow–derived human mesenchymal stem cells. Stem cells 2006; 24 (02) 315-21
- 53 Sen CK, Gordillo GM, Roy S. et al. Human skin wounds: a major and snowballing threat to public health and the economy. Wound repair and regeneration: official publication of the Wound Healing Society [and] the European Tissue Repair Society 2009; 17 (06) 763-71
- 54 Mendez-Eastman S. When wounds won’t heal. Rn 1998; 61 (01) 20-4
- 55 Losi P, Briganti E, Errico C. et al. Fibrin-based scaffold incorporating VEGF-and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice. Acta biomaterialia 2013; 9 (08) 7814-21
- 56 Jazag A, Kanai F, Ijichi H. et al. Single small-interfering RNA expression vector for silencing multiple transforming growth factor-β pathway components. Nucleic Acids Research 2005; 33 (15) e131-e
- 57 Hirsch T, Spielmann M, Velander P. et al. Insulin-like growth factor-1 gene therapy and cell transplantation in diabetic wounds. A cross-disciplinary journal for research on the science of gene transfer and its clinical applications. The Journal of Gene Medicine 2008; 10 (11) 1247-52
- 58 Steinsträsser L, Hasler R, Hirsch T. et al. Future treatment options for chronic wounds. Der Chirurg; Zeitschrift fur alle Gebiete der operativen Medizen 2008; 79 (06) 555-9
- 59 Steinstraesser L, Koehler T, Jacobsen F. et al. Host defense peptides in wound healing. Molecular medicine 2008; 14 (07) 528-37
- 60 Hirsch T, Jacobsen F, Steinau H-U. et al. Host defense peptides and the new line of defence against multiresistant infections. Protein and peptide letters 2008; 15 (03) 238-43
- 61 Velander P, Theopold C, Hirsch T. et al. Impaired wound healing in an acute diabetic pig model and the effects of local hyperglycemia. Wound Repair and Regeneration 2008; 16 (02) 288-93
- 62 Hirsch T, Spielmann M, Zuhaili B. et al. Enhanced susceptibility to infections in a diabetic wound healing model. BMC surgery 2008; 8 (01) 5
- 63 Hirsch T, von Peter S, Dubin G. et al. Adenoviral gene delivery to primary human cutaneous cells and burn wounds. Molecular medicine 2006; 12 9–10 199-207
- 64 Hirsch T, Spielmann M, Zuhaili B. et al. Human beta-defensin-3 promotes wound healing in infected diabetic wounds. A cross-disciplinary journal for research on the science of gene transfer and its clinical applications. The Journal of Gene Medicine 2009; 11 (03) 220-8
- 65 Raschke M, Wildemann B, Inden P. et al. Insulin-like growth factor-1 and transforming growth factor-β1 accelerates osteotomy healing using polylactide-coated implants as a delivery system: a biomechanical and histological study in minipigs. Bone 2002; 30 (01) 144-51
- 66 Schmidmaier G, Wildemann B, Lübberstedt M. et al. IGF-I and TGF-Beta 1 incorporated in a poly (D, L-lactide) implant coating stimulates osteoblast differentiation and collagen-1 production but reduces osteoblast proliferation in cell culture. Journal of Biomedical Materials Research Part B 2003; 65 (01) 157-62
- 67 Jacobsen F, Mohammadi-Tabrisi A, Hirsch T. et al. Antimicrobial activity of the recombinant designer host defence peptide P-novispirin G10 in infected full-thickness wounds of porcine skin. Journal of Antimicrobial Chemotherapy 2007; 59 (03) 493-8
- 68 Richard J-L, Parer-Richard C, Daures J-P. et al. Effect of topical basic fibroblast growth factor on the healing of chronic diabetic neuropathic ulcer of the foot: a pilot, randomized, double-blind, placebo-controlled study. Diabetes Care 1995; 18 (01) 64-9
- 69 Zhang X, Kang X, Jin L. et al. Stimulation of wound healing using bioinspired hydrogels with basic fibroblast growth factor (bFGF). International journal of nanomedicine 2018; 13: 3897
- 70 Guo Y, Xu B, Wang Y. et al. Dramatic promotion of wound healing using a recombinant human-like collagen and bFGF cross-linked hydrogel by transglutaminase. Journal of Biomaterials Science. Polymer Edition 2019; 30: 1-13
- 71 Galiano RD, Tepper OM, Pelo CR. et al. Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. The American journal of pathology 2004; 164 (06) 1935-47
- 72 Hanft J, Pollak R, Barbul A. et al. Phase I trial on the safety of topical rhVEGF on chronic neuropathic diabetic foot ulcers. Journal of wound care 2008; 17 (01) 30-7
- 73 Lara MF, González-González E, Speaker TJ. et al. Inhibition of CD44 gene expression in human skin models, using self-delivery short interfering RNA administered by dissolvable microneedle arrays. Human gene therapy 2012; 23 (08) 816-23
- 74 Aitzetmüller MM, Machens H-G, Duscher D. Challenges and Opportunities in Drug Delivery for Wound Healing. Regenerative Medicine and Plastic Surgery. Cham: Springer; 2019: 27-38
- 75 Gurtner GC, Werner S, Barrandon Y. et al. Wound repair and regeneration. Nature 2008; 453 7193 314-21
- 76 da Silva Meirelles L, Fontes AM, Covas DT. et al. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine & growth factor reviews 2009; 20 5–6 419-27
- 77 Jackson WM, Nesti LJ, Tuan RS. Mesenchymal stem cell therapy for attenuation of scar formation during wound healing. Stem cell research & therapy 2012; 3 (03) 20
- 78 Everding J, Roßlenbroich S, Raschke M. Pseudarthrosen der langen Röhrenknochen. Der Chirurg 2018; 89 (01) 73-88
- 79 Everding J, Stolberg-Stolberg J, Roßlenbroich S. et al. Möglichkeiten der nicht operativen Behandlung von Pseudarthrosen. OP-JOURNAL 2019; 35 (03) 252-61
- 80 Everding J, Freistühler M, Stolberg-Stolberg J. et al. Extrakorporale fokussierte Stoßwellentherapie zur Behandlung von Pseudarthrosen. Der Unfallchirurg 2017; 120 (11) 969-78
- 81 Mousaei Ghasroldasht M, Matin MM, Kazemi Mehrjerdi H. et al. Application of mesenchymal stem cells to enhance non-union bone fracture healing. Journal of Biomedical Materials Research Part A 2019; 107 (02) 301-11
- 82 Ismail H, Phedy P, Kholinne E. et al. Mesenchymal stem cell implantation in atrophic nonunion of the long bones: A translational study. Bone & joint research 2016; 5 (07) 287-93
- 83 Szivek JA, Gonzales DA, Wojtanowski AM. et al. Mesenchymal stem cell seeded, biomimetic 3 D printed scaffolds induce complete bridging of femoral critical sized defects. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2019; 107 (02) 242-52
- 84 Awad ME, Hussein KA, Helwa I. et al. Meta-Analysis and Evidence Base for the Efficacy of Autologous Bone Marrow Mesenchymal Stem Cells in Knee Cartilage Repair: Methodological Guidelines and Quality Assessment. Stem cells international; 2019 15 pages
- 85 Bura A, Planat-Benard V, Bourin P. et al. Phase I trial: the use of autologous cultured adipose-derived stroma/stem cells to treat patients with non-revascularizable critical limb ischemia. Cytotherapy 2014; 16 (02) 245-57
- 86 Locke M, Windsor J, Dunbar PR. Human adipose-derived stem cells: isolation, characterization and applications in surgery. ANZ journal of surgery 2009; 79 (04) 235-44
- 87 Chaput B, Bertheuil N, Escubes M. et al. Mechanically isolated stromal vascular fraction provides a valid and useful collagenase-free alternative technique: A comparative study. Plastic and reconstructive surgery 2016; 138 (04) 807-19
- 88 Condé-Green A, Kotamarti VS, Sherman LS. et al. Shift toward mechanical isolation of adipose-derived stromal vascular fraction: review of upcoming techniques. Plastic and Reconstructive Surgery Global Open; 2016 4. 09
- 89 Bunnell BA, Flaat M, Gagliardi C. et al. Adipose-derived stem cells: isolation, expansion and differentiation. Methods 2008; 45 (02) 115-20
- 90 Kolle SF, Fischer-Nielsen A, Mathiasen AB. et al. Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival: a randomised placebo-controlled trial. Lancet 2013; 382 9898 1113-20
- 91 Brett EA, Aitzetmüller MM, Sauter MA. et al. Breast cancer recurrence after reconstruction: know thine enemy. Oncotarget 2018; 9 (45) 27895
- 92 Schmid R, Wolf K, Robering JW. et al. ADSCs and adipocytes are the main producers in the autotaxin–lysophosphatidic acid axis of breast cancer and healthy mammary tissue in vitro. BMC cancer 2018; 18 (01) 1273
- 93 Kengelbach-Weigand A, Tasbihi K, Strissel PL. et al. Plasticity of patient-matched normal mammary epithelial cells is dependent on autologous adipose-derived stem cells. Scientific reports 2019; 9 (01) 1-14
- 94 Gao H, Priebe W, Glod J. et al. Activation of signal transducers and activators of transcription 3 and focal adhesion kinase by stromal cell-derived factor 1 is required for migration of human mesenchymal stem cells in response to tumor cell-conditioned medium. Stem cells 2009; 27 (04) 857-65
- 95 Gallagher D, Siddiqui F, Fish J. et al. Mesenchymal stromal cells modulate peripheral stress-induced innate immune activation indirectly limiting the emergence of neuroinflammation-driven depressive and anxiety-like behaviors. Biological psychiatry 2019; 86 (09) 712-24
- 96 Barzelay A, Weisthal Algor S, Niztan A. et al. Adipose-Derived Mesenchymal Stem Cells Migrate and Rescue RPE in the Setting of Oxidative Stress. Stem cells international; 2018 11 pages
- 97 Karnoub AE, Dash AB, Vo AP. et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007; 449 7162 557
- 98 Squires CML. How Bone Marrow Mesenchymal Stem Cells Influence the Metastasis of Breast Cancer. University of Otago; 2017
- 99 Ridge SM, Sullivan FJ, Glynn SA. Mesenchymal stem cells: key players in cancer progression. Molecular cancer 2017; 16 (01) 31
- 100 Bao Q, Zhao Y, Niess H. et al. Mesenchymal stem cell-based tumor-targeted gene therapy in gastrointestinal cancer. Stem cells and development 2012; 21 (13) 2355-63
- 101 Shammas RL, Fales AM, Crawford BM. et al. Human Adipose-Derived Stem Cells Labeled with Plasmonic Gold Nanostars for Cellular Tracking and Photothermal Cancer Cell Ablation. Plast Reconstr Surg 2017; 139 (04) 900e-10e
- 102 Shammas RL, Fales AM, Crawford BM. et al. Human adipose-derived stem cells labeled with plasmonic gold nanostars for cellular tracking and photothermal cancer cell ablation. Plastic and reconstructive surgery 2017; 139 (04) 900e
- 103 Jablonka A, Scheich J, Jacobsen F. et al. Influence of preadipocyte-conditioned medium on the proliferation and invasive potential of breast cancer cell lines in vitro. Archives of gynecology and obstetrics 2018; 298 (06) 1159-71
- 104 Weigand A, Tasbihi K, Strissel PL. et al. Development of an innovative cell isolation method for the investigation of breast cancer pathogenesis and angiogenesis for experimental in vitro and in vivo assays. Handchirurgie, Mikrochirurgie. plastische Chirurgie: Organ der Deutschsprachigen Arbeitsgemeinschaft fur Handchirurgie: Organ der Deutschsprachigen Arbeitsgemeinschaft fur Mikrochirurgie der Peripheren Nerven und Gefasse: Organ der V 2017; 49 (02) 111-22
- 105 An R, Schmid R, Klausing A. et al. Proangiogenic effects of tumor cells on endothelial progenitor cells vary with tumor type in an in vitro and in vivo rat model. The FASEB Journal 2018; 32 (10) 5587-601
- 106 Justino Ferreira R, Carolina Irioda A, Correa Cunha R. et al. Controversies about the chromosomal stability of cultivated mesenchymal stem cells: their clinical use is it safe?. Current stem cell research & therapy 2012; 7 (05) 356-63
- 107 Miura M, Miura Y, Padilla-Nash HM. et al. Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem cells 2006; 24 (04) 1095-103
- 108 Tolar J, Nauta AJ, Osborn MJ. et al. Sarcoma derived from cultured mesenchymal stem cells. Stem cells 2007; 25 (02) 371-9
- 109 Erickson IE, van Veen SC, Sengupta S. et al. Cartilage matrix formation by bovine mesenchymal stem cells in three-dimensional culture is age-dependent. Clin Orthop Relat Res 2011; 469 (10) 2744-53
- 110 Maredziak M, Marycz K, Tomaszewski KA. et al. The Influence of Aging on the Regenerative Potential of Human Adipose Derived Mesenchymal Stem Cells. Stem cells international 2016; 2016: 2152435
- 111 Geissler S, Textor M, Kuhnisch J. et al. Functional comparison of chronological and in vitro aging: differential role of the cytoskeleton and mitochondria in mesenchymal stromal cells. PLoS One 2012; 7 (12) e52700
- 112 Fan M, Chen W, Liu W. et al. The effect of age on the efficacy of human mesenchymal stem cell transplantation after a myocardial infarction. Rejuvenation research 2010; 13 (04) 429-38
- 113 Lin H, Shen H, Tuan RS. Aging of Human Mesenchymal Stem Cells. Conn’s Handbook of Models for Human Aging (Second Edition). Amsterdam, Netherlands: Elsevier; 2018: 975-94
- 114 Khong SM, Lee M, Kosaric N. et al. Single-cell transcriptomics of human mesenchymal stem cells reveal age-related cellular subpopulation depletion and impaired regenerative function. Stem Cells 2019; 37 (02) 240-6
- 115 Duscher D, Rennert RC, Januszyk M. et al. Aging disrupts cell subpopulation dynamics and diminishes the function of mesenchymal stem cells. Sci Rep 2014; 4: 7144
- 116 Crisostomo PR, Markel TA, Wang M. et al. In the adult mesenchymal stem cell population, source gender is a biologically relevant aspect of protective power. Surgery 2007; 142 (02) 215-21
- 117 Aronowitz JA, Ellenhorn JD. Adipose stromal vascular fraction isolation: a head-to-head comparison of four commercial cell separation systems. Plastic and Reconstructive Surgery 2013; 132 (06) 932e-9e
- 118 Stemplewski HE. Regulation of Medicinal Products for Human Use in the European Union. Regulatory Toxicology in the European Union 2018; 36: 22
- 119 Kreß H. Forschung an pluripotenten Stammzellen. Klärungsbedarf zu induzierten pluripotenten Stammzellen-Öffnungsbedarf beim Stammzellgesetz. Medizinrecht 2015; 33 (06) 387-92
- 120 Green RM. Ethical considerations. Principles of Regenerative Medicine. Amsterdam, Netherlands: Elsevier; 2019: 1331-43
- 121 Prantl L, Giunta R, Horch R. et al. Streitpunkt Eigenfettbehandlung: Gewebe und nicht Arzneimittel. Dtsch Arztebl International 2019; 116 1–2 26
- 122 Sanzenbacher R, Frech M. Streitpunkt Eigenfettbehandlung: Wenn Gewebe zur Arznei wird. Dtsch Arztebl International 2019; 116 1–2 28-29
- 123 Kiritsi D, Has C, Bruckner-Tuderman L. Laminin 332 in junctional epidermolysis bullosa. Cell adhesion & migration 2013; 7 (01) 135-41
- 124 Hirsch T, Rothoeft T, Teig N. et al. Regeneration of the entire human epidermis using transgenic stem cells. Nature 2017; 551 7680 327
- 125 Goutman SA, Brown MB, Glass JD. et al. Long-term Phase ½ intraspinal stem cell transplantation outcomes in ALS. Annals of clinical and translational neurology 2018; 5 (06) 730-40
- 126 Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell stem cell 2015; 17 (01) 11-22
- 127 Kurtzberg J, Prasad V, Grimley M. et al. Allogeneic human mesenchymal stem cell therapy (Prochymal®) as a rescue agent for severe treatment resistant GVHD in pediatric patients. Biology of Blood and Marrow Transplantation 2010; 16 (02) S169
- 128 Galipeau J, Sensébé L. Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell 2018; 22 (06) 824-33
- 129 Aitzetmüller MM, Sukhova I, Huemer GM. et al. Injizierbare Füllmaterialien-Update und Zukunftsperspektive. Handchirurgie · Mikrochirurgie · Plastische Chirurgie 2017; 49 (06) 423-31
- 130 Amos PJ, Kapur SK, Stapor PC. et al. Human adipose-derived stromal cells accelerate diabetic wound healing: impact of cell formulation and delivery. Tissue Engineering Part A 2010; 16 (05) 1595-606
- 131 Condé-Green A, Marano AA, Lee ES. et al. Fat grafting and adipose-derived regenerative cells in burn wound healing and scarring: a systematic review of the literature. Plastic and reconstructive surgery 2016; 137 (01) 302-12
- 132 Di Rocco G, Gentile A, Antonini A. et al. Enhanced healing of diabetic wounds by topical administration of adipose tissue-derived stromal cells overexpressing stromal-derived factor-1: biodistribution and engraftment analysis by bioluminescent imaging. Stem cells international; 2011 11 pages
- 133 Du J, Liu L, Lay F. et al. Combination of HIF-1alpha gene transfection and HIF-1-activated bone marrow-derived angiogenic cell infusion improves burn wound healing in aged mice. Gene therapy 2013; 20 (11) 1070-6
- 134 Gu Z, Li Y, Li H. Use of condensed nanofat combined with fat grafts to treat atrophic scars. JAMA facial plastic surgery 2018; 20 (02) 128-35
- 135 Negenborn VL, Groen J-W, Smit JM. et al. The use of autologous fat grafting for treatment of scar tissue and scar-related conditions: a systematic review. Plastic and reconstructive surgery 2016; 137 (01) 31e-43e
- 136 di Summa PG, Kingham PJ, Raffoul W. et al. Adipose-derived stem cells enhance peripheral nerve regeneration. Journal of Plastic. Reconstructive & Aesthetic Surgery 2010; 63 (09) 1544-52
- 137 Keilhoff G, Stang F, Goihl A. et al. Transdifferentiated mesenchymal stem cells as alternative therapy in supporting nerve regeneration and myelination. Cellular and molecular neurobiology 2006; 26 7–8 1233-50
- 138 Nanninga GL, Nijhuis TH, Schols RM. et al. Lipofilling may induce nerve regeneration after previous traumatic injury: a clinical case with remarkable outcome. European Journal of Plastic Surgery 2016; 39 (05) 383-6
- 139 Hirsch T, Laemmle C, Behr B. et al. Implant for autologous soft tissue reconstruction using an adipose-derived stem cell-colonized alginate scaffold. Journal of Plastic. Reconstructive & Aesthetic Surgery 2018; 71 (01) 101-11
- 140 Rustad KC, Wong VW, Sorkin M. et al. Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold. Biomaterials 2012; 33 (01) 80-90
- 141 Sivashankari P, Prabaharan M. Prospects of chitosan-based scaffolds for growth factor release in tissue engineering. International journal of biological macromolecules 2016; 93: 1382-9
- 142 Xiang Z, Liao R, Kelly MS. et al. Collagen-GAG scaffolds grafted onto myocardial infarcts in a rat model: a delivery vehicle for mesenchymal stem cells. Tissue engineering 2006; 12 (09) 2467-78
- 143 Calonge M, Pérez I, Galindo S. et al. A proof-of-concept clinical trial using mesenchymal stem cells for the treatment of corneal epithelial stem cell deficiency. Translational Research 2019; 206: 18-40
- 144 Freitag J, Ford J, Bates D. et al. Adipose derived mesenchymal stem cell therapy in the treatment of isolated knee chondral lesions: design of a randomised controlled pilot study comparing arthroscopic microfracture versus arthroscopic microfracture combined with postoperative mesenchymal stem cell injections. BMJ open 2015; 5 (12) e009332
- 145 Smets F, Dobbelaere D, McKiernan P. et al. Phase I/II Trial of Liver–derived Mesenchymal Stem Cells in Pediatric Liver–based Metabolic Disorders: A Prospective, Open Label, Multicenter, Partially Randomized, Safety Study of One Cycle of Heterologous Human Adult Liver–derived Progenitor Cells (HepaStem) in Urea Cycle Disorders and Crigler-Najjar Syndrome Patients. Transplantation 2019; 103 (09) 1903-15
- 146 Sadiq S, Levine B, Yang S. et al. Phase I/II Clinical Trials Testing Multiple Dosing of Intrathecal Mesenchymal Stem Cell-Derived Neural Progenitors in Patients with Progressive MS (N3. 002). AAN Enterprises; 2019
- 147 Lee WS, Kim HJ, Kim KI. et al. Intra-Articular Injection of Autologous Adipose Tissue-Derived Mesenchymal Stem Cells for the Treatment of Knee Osteoarthritis: A Phase IIb, Randomized, Placebo-Controlled Clinical Trial. Stem cells translational medicine 2019; 8 (06) 504-11