Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2023; 34(18): 2244-2248
DOI: 10.1055/a-2028-5646
DOI: 10.1055/a-2028-5646
cluster
Modern Boron Chemistry: 60 Years of the Matteson Reaction
Direct Amination of Benzylic Pinacol Boronates by an Aminoazanium
This work was supported by the National Natural Science Foundation of China (22022113).
Abstract
A practical stereospecific direct amination of benzylic pinacol boronates was achieved by using 4-amino-4-methylmorpholinium iodide as a new amination reagent and cesium carbonate as the base. After amination, an in situ reductive N-alkylation with an aldehyde proceeded well to produce secondary amines.
Key words
benzylic pinacol boronates - amination - asymmetric synthesis - secondary amines - aminomethylmorpholinium iodideSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2028-5646.
- Supporting Information
Publication History
Received: 19 December 2022
Accepted after revision: 03 February 2023
Accepted Manuscript online:
03 February 2023
Article published online:
28 February 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Sandford C, Aggarwal VK. Chem. Commun. 2017; 53: 5481
- 2 Roscales S, Csáky AG. Chem. Soc. Rev. 2020; 49: 5159
- 3 Yang R.-Y, Dai L.-X. Synthesis 1993; 481
- 4a Brown HC, Heydkamp WR, Breuer E, Murphy WS. J. Am. Chem. Soc. 1964; 86: 3565
- 4b Davies AG, Hook SC. W, Roberts BP. J. Organomet. Chem. 1970; 23: C11
- 4c Zhou Z, Kweon J, Jung H, Kim D, Seo S, Chang S. J. Am. Chem. Soc. 2022; 144: 9161
- 5a Bagutski V, Elford TG, Aggarwal VK. Angew. Chem. Int. Ed. 2011; 50: 1080
- 5b Brown HC, Midland MM, Levy AB. J. Am. Chem. Soc. 1973; 95: 2394
- 5c Brown HC, Salunkhe AM, Singaram B. J. Org. Chem. 1991; 56: 1170
- 5d Brown HC, Suzui A, Sonao S, Itoh M, Midland MM. J. Am. Chem. Soc. 1971; 93: 4329
- 5e Kabalka GW, Henderson DA, Varma RS. Organometallics 1987; 6: 1369
- 6a Phanstiel OI, Wang QX, Powell DH, Ospina MP, Leeson BA. J. Org. Chem. 1999; 64: 803
- 6b Tamura Y, Minamikawa J, Fujii S, Ikeda M. Synthesis 1974; 196
- 6c Xiao Q, Tian L, Tan R, Xia Y, Qiu D, Zhang Y, Wang J. Org. Lett. 2012; 14: 4230
- 6d Zhu C, Li G, Ess DH, Falck JR, Kürti L. J. Am. Chem. Soc. 2012; 134: 18253
- 6e Kumar P, Verma S, Rathi K, Chandra D, Prakash Verma V, Jat JL. Eur. J. Org. Chem. 2022; e202200508
- 7a Lennox AJ, Lloyd-Jones GC. Chem. Soc. Rev. 2014; 43: 412
- 7b Synthesis and Application of Organoboron Compounds . Fernandez E, Whiting A. Springer; Cham: 2015
- 8 Brown HC, Kim KW, Cole TE, Singaram B. J. Am. Chem. Soc. 1986; 108: 6761
- 9a Fernandez E, Hooper MW, Knight FI, Brown JM. Chem. Commun. 1997; 173
- 9b Fernandez E, Maeda K, Hooper MW, Brown JM. Chem. Eur. J. 2000; 6: 1840
- 10a Matteson DS, Kim GY. Org. Lett. 2002; 4: 2153
- 10b Kim BJ, Matteson DS. Angew. Chem. Int. Ed. 2004; 43: 3056
- 11 Mlynarski SN, Karns AS, Morken JP. J. Am. Chem. Soc. 2012; 134: 16449
- 12 Edelstein EK, Grote AC, Palkowitz MD, Morken JP. Synlett 2018; 29: 1749
- 13a He Z, Zhu Q, Hu X, Wang L, Xia C, Liu C. Org. Chem. Front. 2019; 6: 900
- 13b He Z, Fan M, Xu J, Hu Y, Wang L, Wu X, Xia C, Liu C. Youji Huaxue 2019; 39: 3438
- 13c Hu Y, Sun W, Zhang T, Xu N, Xu J, Lan Y, Liu C. Angew. Chem. Int. Ed. 2019; 58: 15813
- 13d Zhu Q, Xia C, Liu C. Youji Huaxue 2021; 41: 661
- 13e Wang L, Zhang T, Sun W, He Z, Xia C, Lan Y, Liu C. J. Am. Chem. Soc. 2017; 139: 5257
- 13f Xu N, Xu J, Zhu Q, Liu C. Adv. Synth. Catal. 2021; 363: 2403
- 13g Zhu Q, He Z, Wang L, Hu Y, Xia C, Liu C. Chem. Commun. 2019; 55: 11884
- 14a Shi D, Xia C, Liu C. CCS Chem. 2021; 3: 1718
- 14b Sun W, Wang L, Hu Y, Wu X, Xia C, Liu C. Nat. Commun. 2020; 11: 3113
- 14c Sun W, Wang L, Xia C, Liu C. Angew. Chem. Int. Ed. 2018; 57: 5501
- 14d Zou L.-H, Fan M, Wang L, Liu C. Chin. Chem. Lett. 2020; 31: 1911
- 15a Liu X, Zhu Q, Chen D, Wang L, Jin L, Liu C. Angew. Chem. Int. Ed. 2020; 59: 2745
- 15b Li H, Yin G. Youji Huaxue 2020; 40: 547
- 16a Asai K, Miura M, Hirano K. J. Org. Chem. 2022; 87: 7436
- 16b Li Y, Li Y, Shi H, Wei H, Li H, Funes-Ardoiz I, Yin G. Science 2022; 376: 749
- 16c Dong W, Ye Z, Zhao W. Angew. Chem. Int. Ed. 2022; 61: e202117413
- 16d Kojima Y, Nishii Y, Hirano K. Org. Lett. 2022; 24: 7450
- 16e Zhao P, Huang J, Li J, Zhang K, Yang W, Zhao W. Chem. Commun. 2021; 58: 302
- 16f Du R, Liu L, Xu S. Angew. Chem. Int. Ed. 2021; 60: 5843
- 16g Wang B, Peng P, Ma W, Liu Z, Huang C, Cao Y, Hu P, Qi X, Lu Q. J. Am. Chem. Soc. 2021; 143: 12985
- 16h Kim M, Park B, Shin M, Kim S, Kim J, Baik M.-H, Cho SH. J. Am. Chem. Soc. 2021; 143: 1069
- 17a Yu F, Tao R, Su Y, Liu G, Huang Z. Org. Lett. 2022; 24: 4563
- 17b Li H, Wang L, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2012; 51: 2943
- 17c Bose SK, Brand S, Omoregie HO, Haehnel M, Maier J, Bringmann G, Marder TB. ACS Catal. 2016; 6: 8332
- 17d Wang W, Ding C, Yin G. Nat. Catal. 2020; 3: 951
- 17e Shi D, Wang L, Xia C, Liu C. Angew. Chem. Int. Ed. 2018; 57: 10318
- 17f Noh D, Chea H, Ju J, Yun J. Angew. Chem. Int. Ed. 2009; 48: 6062
- 17g Fan W, Li L, Zhang G. J. Org. Chem. 2019; 84: 5987
- 17h Sun C, Potter B, Morken JP. J. Am. Chem. Soc. 2014; 136: 6534
- 17i Wang L, Sun W, Liu C. Chin. J. Catal. 2018; 39: 1725
- 17j Wang Q.-D, Yang J.-M, Fang D, Ren J, Dong B, Zhou B, Zeng B.-B. Tetrahedron Lett. 2016; 57: 2587
- 18 Chiral Amine Synthesis: Methods, Developments and Applications. Nugent TC. Wiley-VCH; Weinheim: 2010
- 19a Xu J, Chen D, Liu C. Org. Biomol. Chem. 2022; 20: 8353
- 19b Armstrong A, Carbery DR, Lamont SG, Pape AR, Wincewicz R. Synlett 2006; 2504
- 20 Compounds 2a–ab; General Procedure An oven-dried Schlenk tube was charged with the appropriate boronate (0.2 mmol), H2N-NMM (68.3 mg, 1.4 equiv), and Cs2CO3 (91.2 mg, 1.4 equiv), then purged with N2. Anhyd toluene (2 mL) was added and the mixture was stirred at 100 °C for 10 h. A 1 M solution of Boc2O in THF (2.0 equiv) was added and the mixture was heated at 80 °C for 1 h. The reaction was quenched with EtOAc, and the mixture was concentrated under a vacuum. The residue was purified by flash column chromatography [silica gel, PE–EtOAc (10:1)]. Visualization was performed by using ninhydrin. tert-Butyl (1-phenylethyl)carbamate (2a) White solid; yield: 36.2 mg (82%). 1H NMR (400 MHz, CDCl3): δ = 7.36–7.22 (m, 5 H), 4.79 (br s, 2 H), 1.53–1.21 (m, 12 H). 13C NMR (101 MHz, CDCl3): δ = 155.2, 144.1, 128.7, 127.2, 126.0, 79.5, 50.3, 28.5, 22.8.