Synlett 2023; 34(12): 1467-1471
DOI: 10.1055/a-2059-3498
cluster
Special Issue Honoring Masahiro Murakami’s Contributions to Science

Martin Silicates as Versatile Radical Precursors in Photoredox/ Nickel Dual Catalysis

Maxim-Aleksa Wiethoff
a   Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 40, 48149 Münster, Germany
,
Mehdi Abdellaoui
b   Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, C 229, 75252 Paris, Cedex 05, France
,
Thomas Deis
b   Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, C 229, 75252 Paris, Cedex 05, France
,
Vincent Corcé
b   Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, C 229, 75252 Paris, Cedex 05, France
,
Gilles Lemière
b   Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, C 229, 75252 Paris, Cedex 05, France
,
Cyril Ollivier
b   Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, C 229, 75252 Paris, Cedex 05, France
,
b   Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, C 229, 75252 Paris, Cedex 05, France
› Author Affiliations
This work was supported by Sorbonne Université, Centre National de la Recherche Scientifique (CNRS) and Institut Universitaire de France (IUF).


Abstract

A cross-coupling methodology is described based on the nickel-catalyzed connection of an aryl moiety to an alkyl radical generated by photoinduced single-electron oxidation of a silicate formed from a Martin spirosilane. Complementary to the other anionic radical precursors in photoredox catalysis, Martin silicates permit access to highly reactive alkyl radicals directly engageable in smooth C(sp2)–C(sp3) bond-formation reactions.

Supporting Information



Publication History

Received: 31 January 2023

Accepted after revision: 21 March 2023

Accepted Manuscript online:
21 March 2023

Article published online:
21 April 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai HA, Seath CP, MacMillan DW. C. Chem. Rev. 2022; 122: 1485
  • 2 Crespi S, Fagnoni M. Chem. Rev. 2020; 120: 9790
  • 3 Corcé V, Ollivier C, Fensterbank L. Chem. Soc. Rev. 2022; 51: 1470
  • 4 Zuo Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DW. C. Science 2014; 345: 437
  • 5 Tellis JC, Primer DN, Molander GA. Science 2014; 345: 433
  • 6 Knauber T, Chandrasekaran R, Tucker JW, Chen JM, Reese M, Rankic DA, Sach N, Helal C. Org. Lett. 2017; 19: 6566
  • 7 Nakajima K, Nojima S, Nishibayashi Y. Angew. Chem. Int. Ed. 2016; 55: 14106
  • 8 Basch CH, Liao J, Xu J, Piane JJ, Watson MP. J. Am. Chem. Soc. 2017; 139: 5313
  • 9 Klauck FJ. R, James MJ, Glorius F. Angew. Chem. Int. Ed. 2017; 56: 12336
  • 10 Huang L, Ji T, Rueping M. J. Am. Chem. Soc. 2020; 142: 3532
  • 13 Lévêque C, Chenneberg L, Corcé V, Goddard J.-P, Ollivier C, Fensterbank L. Org. Chem. Front. 2016; 3: 462
  • 14 Jouffroy M, Primer DN, Molander GA. J. Am. Chem. Soc. 2016; 138: 475
  • 15 Ikarashi G, Morofuji T, Kano N. Chem. Commun. 2020; 56: 10006
  • 16 Morofuji T, Matsui Y, Ohno M, Ikarashi G, Kano N. Chem. Eur. J. 2021; 27: 6713
  • 17 Joshi-Pangu A, Lévesque F, Roth HG, Oliver SF, Campeau L.-C, Nicewicz D, DiRocco DA. J. Org. Chem. 2016; 81: 7244
  • 18 White AR, Wang L, Nicewicz DA. Synlett 2019; 30: 827
  • 19 Fukuzumi S, Kotani H, Ohkubo K, Ogo S, Tkachenko NV, Lemmetyinen H. J. Am. Chem. Soc. 2004; 126: 1600
  • 20 Uygur M, Danelzik T, Garcia-Mancheño O. Chem. Commun. 2019; 55: 2980
  • 21 Cross-Coupling Reaction; General Procedure A flame-dried, sealed, microwave tube, purged by three argon/vacuum cycles, was charged with the appropriate silicate 1ah (0.2 mmol, 1 equiv), NiBr2BPhen (5.5 mg, 0.01 mmol, 5 mol%), and photocatalyst PC1 (5.7 mg, 0.01 mmol, 5 mol%) under argon, along with the appropriate aryl bromide or iodide (0.4 mmol, 2 equiv), if solid. (When the aryl bromide was a liquid, it was introduced from a microsyringe after adding the solvent under argon.) Distilled CH2Cl2 was then added (0.2 M) under argon, followed by three freeze–pump–thaw cycles to degas the mixture. The mixture was then irradiated with a blue LED for 24 h at r.t. The reaction was then quenched with sat. aq K2CO3 (10 mL) and the mixture was extracted with Et2O (3 × 20 mL) and H2O (3 × 20 mL). The combined organic layers were concentrated under vacuum, and the crude product was purified by flash chromatography (silica gel). 1-[4-(Tetrahydro-2H-pyran-4-yl)phenyl]-1H-pyrrole (4) Brown solid; yield: 19.2 mg (51%); mp 119.8–124.1 °C. 1H NMR: (300 MHz, CDCl3): δ = 7.40–7.34 (m, 2 H), 7.33–7.27 (m, 2 H), 7.09 (t, J = 2.2 Hz, 2 H), 6.37 (t, J = 2.2 Hz, 2 H), 4.19–4.07 (m, 2 H), 3.58 (dt, J = 11.3, 3.1 Hz, 2 H), 2.81 (tt, J = 10.6, 5.5 Hz, 1 H), 1.96–1.75 (m, 4 H). 13C NMR: (75 MHz, CDCl3): δ = 143.5, 139.3, 127.9, 120.9, 119.5, 110.4, 68.5, 41.2, 34.1. HRMS (ESI): m/z [M + H]+ calcd for C15H18NO: 228.1383; found: 228.1384. Methyl 6-(Tetrahydro-2H-pyran-4-yl)-2-naphthoate (11) White solid; yield: 37.9 mg (70%); mp 115.1–119.1 °C. 1H NMR: (400 MHz, CDCl3): δ = 8.58 (s, 1 H), 8.05 (dd, J = 8.6, 1.7 Hz, 1 H), 7.91 (d, J = 8.5 Hz, 1 H), 7.83 (d, J = 8.6 Hz, 1 H), 7.68 (d, J = 1.7 Hz, 1 H), 7.44 (dd, J = 8.5, 1.8 Hz, 1 H), 4.13 (ddt, J = 11.5, 4.3, 1.6 Hz, 2 H), 3.98 (s, 3 H), 3.59 (td, J = 11.6, 2.5 Hz, 2 H), 2.95 (tt, J = 11.6, 4.2 Hz, 1 H), 2.06–1.78 (m, 4 H). 13C NMR: (101 MHz, CDCl3): δ = 167.3, 146.0, 135.8, 131.3, 130.8, 129.5, 127.8, 126.9, 126.5, 125.4, 124.6, 68.3, 52.2, 41.8, 33.7. HRMS (ESI): m/z [M + H]+ calcd for C17H19O: 271.1329; found: 271.1327. tert-Butyl 4-(Tetrahydro-2H-pyran-4-ylmethylene)piperidine-1-carboxylate (21)Brown solid; yield: 27.0 mg (48%); mp 97–100.5 °C. 1H NMR: (300 MHz, CDCl3): δ = 5.06 (d, J = 8.5 Hz, 1 H), 3.99–3.87 (m, 2 H), 3.50–3.32 (m, 6 H), 2.55–2.33 (m, 1 H), 2.16 (dt, J = 31.4, 5.7 Hz, 4 H), 1.42 (s, 13 H). 13C NMR: (75 MHz, CDCl3): δ = 154.9, 134.8, 128.8, 79.6, 67.8, 35.9, 33.5, 33.4, 28.8, 28.6. HRMS (ESI): m/z [M + H]+ calcd for C16H28NO3: 282.2064; found: 282.2068. Methyl 6-sec-Butyl-2-naphthoate (24) Yellow oil; yield: 19.7 mg (41%). 1H NMR: (400 MHz, CDCl3): δ = 8.57 (d, J = 1.8 Hz, 1 H), 8.03 (dd, J = 8.6, 1.7 Hz, 1 H), 7.85 (dd, J = 27.2, 8.6 Hz, 2 H), 7.64 (d, J = 1.8 Hz, 1 H), 7.41 (dd, J = 8.5, 1.8 Hz, 1 H), 3.98 (s, 3 H), 2.86–2.73 (m, 1 H), 1.78–1.63 (m, 2 H), 1.33 (d, J = 6.9 Hz, 3 H), 0.86 (t, J = 7.4 Hz, 3 H). 13C NMR: (101 MHz, CDCl3): δ = 167.6, 148.1, 136.0, 129.5, 127.9, 126.9, 125.4, 125.3, 52.3, 42.1, 31.1, 21.8, 12.4. HRMS (ESI): m/z [M + H]+ calcd for C16H19O2: 243.1380; found: 243.1376.
  • 22 For the introduction of a methyl group and its 13C- and 2H-labeled analogues, see: Abdellaoui M, Deis T, Wiethoff M.-A, Bahri C, Lemière G, Ollivier C, Fensterbank L. Adv. Synth. Catal. 2023; 365: 884