Subscribe to RSS
DOI: 10.1055/s-0028-1087394
The First N-Glycosylated Indoxyls and Their Application to the Synthesis of Indirubin-N-glycosides (Purple Sugars)
Publication History
Publication Date:
15 January 2009 (online)
![](https://www.thieme-connect.de/media/synlett/200902/lookinside/thumbnails/10.1055-s-0028-1087394-1.jpg)
Abstract
The first indirubin-N-glycosides (purple sugars), containing a sugar moiety located at the amine-type nitrogen atom, are prepared by condensation of hitherto unknown indoxyl-N-glycosides with isatines.
Key words
carbohydrates - heterocycles - indirubin - indol
- 1 Review:
Gribble G.Berthel S. Studies in Natural Products Chemistry Vol. 12: Elsevier Science Publishers; New York: 1993. p.365 - Isolation of staurosporin:
-
2a Synthesis:
Omura S.Iwai Y.Hirano A.Nakagawa A.Awaya J.Tsuchiya H.Takahashi Y.Masuma R. J. Antibiot. 1977, 30: 275 -
2b Pharmacological activity:
Link JT.Raghavan S.Gallant M.Danishefsky SJ.Chou TC.Ballas LM. J. Am. Chem. Soc. 1996, 118: 2825 -
2c
Yamashita Y.Fujii N.Murakata C.Ashizawa T.Okabe M.Nakano H. Biochemistry 1992, 31: 12069 - 3
Hein M.Nguyen TBP.Michalik D.Görls H.Lalk M.Langer P. Tetrahedron Lett. 2006, 47: 5741 - 4
Maskey RP.Grün-Wollny I.Fiebig HH.Laatsch H. Angew. Chem. Int. Ed. 2002, 41: 597 ; Angew. Chem. 2002, 114, 623 -
5a
Sassatelli M.Saab E.Anizon F.Prudhomme M.Moreau P. Tetrahedron Lett. 2004, 45: 4827 -
5b
Sassatelli M.Bouchikhi F.Messaoudi S.Anizon F.Debiton E.Barthomeuf C.Prudhomme M.Moreau P. Eur. J. Med. Chem. 2006, 41: 88 -
5c
Sassatelli M.Bouchikhi F.Aboab B.Anizon F.Doriano F.Prudhomme M.Moreau P. Anti-Cancer Drugs 2007, 18: 1069 - 6
Indirubin,
the Red Shade of Indigo In Life in Progress
Meijer L.Guyard N.Skaltsounis LA.Eisenbrand G. Station Biologique; Roscoff: 2006. - 7
Xiao Z.Hao Y.Liu B.Qian L. Leuk. Lymphoma 2002, 43: 1763 -
8a
De Azevedo WF.Leclerc S.Meijer L.Havlicek L.Strnad M.Kim SH. Eur. J. Biochem. 1997, 243: 518 -
8b
Hoessel R.Leclerc S.Endicott J.Noble M.Lawrie A.Tunnah P.Leost M.Damiens E.Marie D.Marko D.Niederberger E.Tang W.Eisenbrand G.Meijer L. Nat. Cell Biol. 1999, 1: 60 -
9a
Beauchard A.Ferandin Y.Frère S.Lozach O.Blairvacq M.Meijer L.Thiéry V.Besson T. Bioorg. Med. Chem. 2006, 14: 6434 -
9b
Ferandin Y.Bettayeb K.Kritsanida M.Lozach O.Polychronopoulos P.Magiatis P.Skaltsounis AL.Meijer L. J. Med. Chem. 2006, 49: 4638 -
9c
Ribas J.Bettayeb K.Ferandin Y.Garrofé-Ochoa X.Knockaert M.Totzke F.Schächtele C.Mester J.Polychronopoulos P.Magiatis P.Skaltsounis AL.Boix J.Meijer L. Oncogene 2006, 25: 6304 -
9d
Mapelli M.Massimiliano L.Crovace C.Seeliger M.Tsai LH.Meijer L.Musacchio A. J. Med. Chem. 2005, 48: 671 -
9e
Wu ZL.Aryal P.Lozach O.Meijer L.Guengerich FP. Chem. Biodiversity 2005, 2: 51 -
9f
Duensing S.Duensing A.Lee DC.Edwards KM.Piboonniyom SO.Manuel E.Skaltsounis L.Meijer L.Münger K. Oncogene 2004, 23: 8206 -
9g
Guengerich FP.Sorrells JL.Schmitt S.Krauser JA.Aryal P.Meijer L. J. Med. Chem. 2004, 47: 3236 -
9h
Droucheau E.Primot A.Thomas V.Mattei D.Knockaert M.Richardson C.Sallicandro P.Alano P.Jafarshad A.Baratte B.Kunick C.Parzy D.Pearl L.Doerig C.Meijer L. Biochim. Biophys. Acta 2004, 1697: 181 -
9i
Sato N.Meijer L.Skaltsounis L.Greengard P.Brivanlou A. Nature Med. 2004, 10: 55 -
9j
Meijer L.Skaltsounis AL.Magiatis P.Polychronopoulos P.Knockaert M.Leost M.Ryan XP.Vonica CD.Brivanlou A.Dajani R.Tarricone A.Musacchio A.Roe SM.Pearl L.Greengard P. Chem. Biol. 2003, 10: 1255 -
9k
Damiens E.Baratte B.Marie D.Eisenbrand G.Meijer L. Oncogene 2001, 20: 3786 -
9l
Davies TG.Tunnah P.Meijer L.Marko D.Eisenbrand G.Endicott JA.Noble MEM. Structure 2001, 9: 389 - 10
Libnow S.Hein H.Michalik D.Langer P. Tetrahedron Lett. 2006, 47: 6907 - 11
Libnow S.Methling K.Hein M.Michalik D.Harms M.Wende K.Flemming A.Köckerling M.Reinke H.Bednarski PJ.Lalk M.Langer P. Bioorg. Med. Chem. 2008, 16: 5570 - 12
Witulski B.Buschmann N.Bergsträßer U. Tetrahedron 2000, 56: 8473 - 14
Walsh DA.Moran HW.Shamblee DA.Uwaydah IM.Welstead WJ.Sancilio LF.Dannenburg WN.
J. Med. Chem. 1984, 27: 1379 - 15
Mewshaw RE.Webb MB.Marquis KL.McGaughey GB.Shi X.Wasik T.Scerni R.Brennan JA.Andree TH. J. Med. Chem. 1999, 42: 2007 - 17
Pretka JE.Lindwall HG. J. Org. Chem. 1954, 19: 1080 - 19
Buzas A.Mérour J.-Y. Synthesis 1989, 6: 458 - 20
Guyen B.Schultes CM.Hazel P.Mann J.Neidle S. Org. Biomol. Chem. 2004, 2: 981 - 21
Davion Y.Joseph B.Beneteau V.Leger J.-M.Jarry M.Mérour J.-Y. Helv. Chim. Acta 2003, 86: 2687
References and Notes
General Procedure
for the Synthesis of N-Glycosylated Indoxyl-3-acetates
Silver acetate (6.0 equiv)
was added to a stirred solution of 3-iodoindolylrhamnoside in glacial
acetic acid. The resulting suspension was stirred at 80 ˚C
for 4 h. After the reaction was completed, the solution was allowed
to cool to r.t., and ice water was subsequently added. The suspension was
filtered, and the filtrate was extracted with EtOAc (3×). The
combined organic layers were washed with an aq solution of NaHCO3 and
H2O and dried over Na2SO4. The solution
was filtered and the solvent of the filtrate was removed under reduced
pressure. The residue was purified by column chromatography.
3-Acetoxy-1-(2′,3′,4′-tri-
O
-benzyl-β-
l
-rhamnopyranosyl) indole
(8β)
Starting with 6β (2.30
g, 3.5 mmol), AcOH (20 mL), and AgOAc (3.50 g, 21.0 mmol), 8β was isolated after column chromatography
(heptanes-EtOAc = 10:1 → 6:1)
as colorless crystals (1.23 g, 60%), mp 125-126 ˚C; [α]D
²²
-24.24
(c 1.13, CHCl3); R
f
= 0.36
(heptanes-EtOAc = 3:1). ¹H
NMR (250 MHz, CDCl3): δ = 7.66
(s, 1 H, H-2); 7.54 (m, ³
J = 7.6
Hz, 1 H, Hetar), 7.39-7.10 (m, 18 H, Hetar, Ph), 5.55 (d, ³
J
1
′
,2
′ = 0.9
Hz, 1 H, H-1′), 5.01, 4.73 (2 d, ²
J
Ha,Hb = 10.9
Hz, 2 H, CH
2Ph), 4.68 (s,
2 H, CH
2Ph), 4.41, 4.26 (2d, ²
J
Ha,Hb = 11.1
Hz, 2 H, CH
2Ph), 4.00 (‘dd’, ³
J
1
′
,2
′ = 0.9
Hz, ³
J
2
′
,3
′ = 2.4
Hz, 1 H, H-2′), 3.80-3.75 (m, ³
J
2
′
,3
′ = 2.3
Hz, ³
J
4
′
,5
′ = 9.3
Hz, 2 H, H-3′, H-4′), 3.67-3.55 (m, ³
J
5
′
,6
′ = 6.1
Hz, ³
J
4
′
,5
′ = 9.3
Hz, 1 H, H-5′), 2.36 [s, 3 H, C(O)CH3],
1.42 (d, ³
J
5
′
,6
′= 6.1
Hz, 1 H, H-6′). ¹³C NMR (75 MHz,
CDCl3): δ = 168.4 [C(O)CH3], 138.3,
138.0, 137.7 (CqPh), 132.2, 130.3 (Cq-Hetar),
128.4, 128.1, 128.0, 127.7, 127.5 (CHPh),
122.4 (CH-Hetar), 120.9 (Cq-Hetar), 120.0, 117.8 (2 s,
2 × CH-Hetar), 116.0 (C-2), 109.5 (CH-Hetar), 83.1, 82.9,
79.6, 76.0, (C-1′, C-2′, C-3′, C-4′),
75.5 (CH2Ph), 75.0 (C-5′),
74.6, 72.3 (CH2Ph), 20.9 [C(O)CH3], 18.1
(C-6′).
MS (EI, 70 eV): m/z (%) = 591
(82) [M+], 549 (20) [benzylated
indoxyl-N-rhamnoside+],
133 (16) [indoxyl+], 91 (100) [Bn+].
HRMS (EI, 70 eV): m/z calcd
for C37H37NO6 [M+]:
591.26154; found: 591.26148. In addition, 10β (0.41 g,
21%) was isolated as a byproduct, R
f
= 0.23
(heptane-EtOAc = 3:1).
Libnow S.; Hein, M.; Flemming, A.; Köckerling, M.; Langer, P., unpublished results.
18
General Procedure
for the Synthesis of Indirubin-
N
-glycosides
To
a stirred dioxane solution of N-glycosylated indoxyl-3-acetate was
added an aq solution of Na2CO3. The reaction mixture
was stirred at 80 ˚C. After the reaction was completed,
a fluorescent spot was visible on the TLC plate. Ice-water was added,
and the mixture was extracted by degassed EtOAc. The combined organic
layers were dried over Na2SO4, filtered, and
the solvent of the filtrate was removed under reduced pressure.
The residue was dissolved in degassed benzene and isatine (2.0 equiv),
and a catalytic amount of piperidine was added. The solution was
stirred at 80 ˚C for 2 h. After completion of
the reaction, the mixture was diluted with toluene. The solvent
was removed under reduced pressure, and the residue was purified
by column and thin-layer chromatography (Figure
[³]
).
N
-(2′′,3′′,4′′-Tri-
O
-benzyl-β-
l
-rhamnopyranosyl) indirubin
12β
Starting with 8β (250 mg, 0.42 mmol), dioxane
(5 mL), and Na2SO3 (160 mg, 1.27 mmol, dissolved
in 5 mL of H2O) and isatine (124 mg, 0.84 mmol), 12β was isolated as a purple solid
(95 mg, 33%). The purification was carried out by column
chromatography (heptanes-EtOAc = 9:1 → 4:1) and
TLC (heptanes-EtOAc = 3.5:1 → 1:1),
mp 93-95 ˚C (heptanes-EtOAc); R
f
= 0.37
(heptanes-EtOAc = 3:1).
¹H
NMR (300 MHz, C6D6): δ = 8.78
(dd, 4
J
4
′
,6
′ = 1.2
Hz, ³
J
4,5 = 7.7
Hz, 1 H, H-4′), 8.36 (d, ³
J
6,7 = 8.4
Hz, 1 H, H-7), 7.82 (s, 1 H, NH), 7.60 (dd, 4
J
4,6 = 1.2
Hz, ³
J
4,5 = 7.4
Hz,
1 H, H-4), 7.52 (m, ³
J = 7.7 Hz,
2 H, Hetar), 7.39-6.84 (m, 15 H, Hetar), 6.63 (‘t’, ³
J = 7.3 Hz,
1 H, Hetar), 6.28 (‘d’, ³
J
6
′
,7
′ = 7.4
Hz, 1 H, H-7′), 5.65 (d, ³
J
2
′′
,3
′′ = 2.2
Hz, 1 H,
H-2′′), 5.56 (s, 1 H, H-1′′),
5.07, 4.59 (2 d, ²
J
Ha,Hb = 11.4
Hz, 2 H, CH2Ph), 4.87, 4.62 (2 d, ²
J
Ha,Hb = 10.9
Hz, 2 H, CH2Ph), 4.86, 4.79 (2d, ²
J
Ha,Hb = 11.9
Hz, 2 H, CH2Ph), 3.95 (dd, ³
J
2
′′
,3
′′ = 2.4
Hz, ³
J
3
′′
,4
′′ = 9.5
Hz, 1 H, H-3′′), 3.87 (‘t’, ³
J
3
′′
,4
′′ = ³
J
4
′′
,5
′′ = 9.2
Hz, 1 H, H-4′′), 3.31 (dq, ³
J
5
′′
,6
′′ = 6.2 Hz, ³
J
4
′′
,5
′′ = 8.8
Hz, 1 H, H-5′′), 1.23 (d, ³
J
5
′′
,6
′′ = 6.2
Hz, 3 H, H-6′′). ¹³C
NMR (75 MHz, C6D6): δ = 187.4
(C-3), 169.2, 152.2, 144.0, 140.1 (4 s, C-2, C-2′, C-7a,
C-7a′), 139.3, 139.1, 138.8 (3 s, 3 × C
qPh), 135.5 (C-6), 129.9
(C-6′), 129.1, 128.6, 128.6, 128.4, 128.4, 128.4, 128.3,
128.3, 128.3, 128.1, 128.1, 128.1, 127.9, 127.8, 127.7 (15 s, 15 × CHPh), 126.9 (C-4′), 123.9 (C-4),
123.6, 122.6 (C-3a, C-3a′), 122.9 (C-5), 121.9 (C-5′),
120.4 (C-7), 112.0 (C-3′), 109.3 (C-7′), 89.9
(C-1′′), 83.9 (C-3′′), 79.8
(C-4′′), 78.3
(C-2′′),
75.4 (C-5′′), 75.6, 75.3, 71.9 (3 s, 3 × CH2Ph), 18.2 (C-6′′).
MS (EI, 70eV): m/z (%) = 678
(17) [M+], 548 (9) [benzylated N-rhamnosyl indolone+],
262 (83) [indirubin+], 91
(100) [Bn+]. HRMS (EI, 70
eV): m/z calcd for C43H38N2O6 [M+]:
678.27244; found: 678.27242.
Synthesis of N -β- l -Rhamnopyranosylindirubin (14β) To a cooled (-78 ˚C) CH2Cl2 solution (8 mL) of 12β (90 mg, 0.133 mmol) was added BBr3 (1 M solution in CH2Cl2, 2.0 mmol). After stirring for 3.5 h at -78 ˚C, an aq solution of NaHCO3 was added at -78 ˚C. The mixture was allowed to warm to 20 ˚C and was extracted with EtOAc. The combined organic layers were dried (Na2SO4), filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (CHCl3-EtOH = 20:1 → 5:1) to give 14β (36 mg, 67%) as a purple solid, mp 148-151 ˚C; R f = 0.39 (CHCl3-EtOH = 5:1). ¹H NMR (300 MHz, DMSO-d 6): δ = 10.70 (s, 1 H, NH), 8.33 (d, ³ J 4 ′ ,5 ′ = 8.1 Hz, 1 H, H-4′), 8.20 (d, ³ J 6,7 = 8.3 Hz, 1 H, H-7), 7.58 (d, ³ J 4,5 = 7.6 Hz, 1 H, H-4), 7.53 (‘dt’, 4 J 4,6 = 1.4 Hz, ³ J 5,6 = ³ J 6,7 = 7.9 Hz, 1 H, H-6), 7.22 (‘dt’, 4 J 4 ′ ,6 ′ = 1.2 Hz, ³ J 5 ′ ,6 ′ = ³ J 6 ′ ,7 ′ = 7.6 Hz, 1 H, H-6′), 7.08 (t, ³ J 4,5 = ³ J 5,6 = 7.5 Hz, 1 H, H-5), 6.90 (‘t’, ³ J 4 ′ ,5 ′ = ³ J 5 ′ ,6 ′= 7.6 Hz, 1 H, H-5′), 6.84 (d, ³ J 6 ′ ,7 ′ = 7.7 Hz, 1 H, H-7′), 5.49 (s, H-1′′), 5.23 (d, ³ J x,OH = 5.0 Hz, 1 H, OH), 4.83 (s, 1 H, OH), 4.75 [s(br), 2 H, H-2′′, OH], 3.50-3.25 (m, 3 H, H-3′′, H-4′′, H-5′′), 1.17 (d, ³ J 5 ′′ ,6 ′′ = 5.1 Hz, 3 H, H-6′′). ¹³C NMR (75 MHz, DMSO-d 6): δ = 187.6 (C-3), 168.1 (C-2′), 153.0 (C-7a), 142.4 (C-2), 141.6 (C-7a′), 135.7 (C-6), 130.3 (C-6′), 125.6 (C-4′), 123.3 (C-4), 122.7, 121.5 (C-3a, C-3a′), 122.5 (C-5), 120.7 (C-5′), 120.5 (C-7), 112.8 (C-3′), 109.5 (C-7′), 89.6 (C-1′′), 75.5, 73.7, 71.8 (C-3′′, C-4′′, C-5′′), 71.4 (C-2′′), 18.3 (C-6′′). MS (EI, 70eV): m/z (%) = 408 (3) [M+], 262 (100) [indirubin+]. HRMS (EI, 70 eV): m/z calcd for C22H20N2O6 [M+]: 408.13159; found: 408.13156.