Subscribe to RSS
DOI: 10.1055/s-0029-1217335
A Simple, General, and Highly Chemoselective Acetylation of Alcohols Using Ethyl Acetate as the Acetyl Donor Catalyzed by a Tetranuclear Zinc Cluster
Publication History
Publication Date:
02 June 2009 (online)
Abstract
In the presence of a Zn-cluster catalyst, alcohols are efficiently converted to the corresponding acetate just by refluxing in EtOAc. The mild reaction conditions enabled the reactions of various functionalized alcohols to proceed in good to excellent yield. Moreover, even when a large excess of the acetyl donor is used, the hydroxyl groups are selectively acetylated in the presence of highly nucleophilic aliphatic amino groups, approaching chemoselectivity to that of enzymatic system.
Key words
zinc clusters - catalysis - acetylations - transesterifications - green chemistry
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Comprehensive Organic Synthesis
Vol
6.:
Trost BM.Fleming I. Pergamon Press; New York: 1992. -
1b
Larock RC. In Comprehensive Organic Transformations 2nd ed.: Wiley-VCH; New York: 1996. -
1c
Otera J. In Esterification Methods, Reactions and Applications Wiley-VCH; Weinheim: 2003. - 2
Protective
Groups in Organic Synthesis
4th ed.:
Green TW.Wuts PGM. John Wiley and Sons; New Jersey: 2006. - 3 For a representative example of catalytic
acetylation with Ac2O under auxiliary base-free conditions,
see:
Sakakura A.Kawajiri K.Ohkubo T.Kosugi Y.Ishihara K. J. Am. Chem. Soc. 2007, 129: 14775 ; and references therein - For reviews, see:
-
4a
Otera J. Chem. Rev. 1993, 93: 1449 -
4b
Hydonckx HE.De Vos DE.Chavan SA.Jacobs PA. Top. Catal. 2004, 27: 83 -
4c
Grasa GA.Singh R.Nolan SP. Synthesis 2004, 971 - For acetylation using enol esters as an acyl donor, see:
-
5a
Kita Y.Maeda H.Omori K.Okuno T.Tamura Y. Synlett 1993, 273 -
5b
Ishii Y.Takeno M.Kwasaki Y.Murromachi A.Nishiyama Y.Sakaguchi S. J. Org. Chem. 1996, 61: 3088 -
5c
Dinh PM.Howarth JA.Hudnott AR.Williams JMJ. Tetrahedron Lett. 1996, 37: 7623 -
5d
Orita A.Mitsutome A.Otera J. J. Org. Chem. 1998, 63: 2420 -
5e
Ilankumaran P.Verkade JG. J. Org. Chem. 1999, 64: 9063 -
5f
Lin M.-H.RajanBabu TV. Org. Lett. 2000, 2: 997 -
5g
Grasa GA.Kissling RM.Nolan SP. Org. Lett. 2002, 4: 3583 -
5h
Grasa GA.Güveli T.Singh R.Nolan SP. J. Org. Chem. 2003, 68: 2812 -
5i
Bosco JWJ.Saikia AK. Chem. Commun. 2004, 1116 -
5j
Shirae Y.Mino T.Hasegawa T.Sakamoto M.Fujita T. Tetrahedron Lett. 2005, 46: 5877 -
5k
Bosco JWJ.Agrahari A.Saikia AK. Tetrahedron Lett. 2006, 47: 4065 -
5l
Kobayashi J.Mori Y.Kobayashi S. Chem. Commun. 2006, 4227 -
5m
Mino T.Hasegawa T.Shirae Y.Sakamoto M.Fujita T. J. Organomet. Chem. 2007, 692: 4389 -
5n
Magen S.Ertelt M.Jatsch A.Plietker B. Org. Lett. 2008, 10: 53 - For acetylation with enol esters by enzymes, see:
-
6a
Wong C.-H.Whitesides GM. In Enzymes in Synthetic Organic Chemistry Pergamon; Oxford: 1994. -
6b
Faber K. In Biotransformations in Organic Chemistry Spinger; Berlin: 2000. -
7a
Nishiguchi T.Taya H. J. Am. Chem. Soc. 1989, 111: 9102 -
7b
Iranpoor N.Shekarriz M. Bull. Chem. Soc. Jpn. 1999, 72: 455 -
7c
Orita A.Sakamoto K.Hamada Y.Mitsutome A.Otera J. Tetrahedron 1999, 55: 2899 -
7d
Ranu BC.Dutta P.Sarkar A. J. Chem. Soc., Perkin Trans. 1 2000, 2223 -
7e
Habibi MH.Tangestaninejad S.Mirkhani V.Yadollahi B. Tetrahedron 2001, 57: 8333 -
7f
Singh R.Kissling RM.Letellier M.-A.Nolan SP. J. Org. Chem. 2004, 69: 209 -
7g
Tayebee R.Alizadeh MH. Monatsh. Chem. 2006, 137: 1063 - Substrates bearing cyclic acetal and TBDMS ether functionalities were used for In/I2 catalyst system, see ref. 7d. Representative examples using stoichiometric amounts of reagents, see:
-
8a
Posner GH.Oda M. Tetrahedron Lett. 1981, 22: 5003 -
8b
Posner GH.Okada SS.Babiak KA.Miura K.Rose RK. Synthesis 1981, 789 -
9a
Ohshima T.Iwasaki T.Mashima K. Chem. Commun. 2006, 2711 -
9b
Ohshima T.Iwasaki T.Maegawa Y.Yoshiyama A.Mashima K. J. Am. Chem. Soc. 2008, 130: 2944 -
9c
Iwasaki T.Maegawa Y.Hayashi Y.Ohshima T.Mashima K. J. Org. Chem. 2008, 73: 5147 -
9d
Sniady A.Durham A.Morreale MS.Marcinek A.Szafert S.Lis T.Brzezinska KR.Iwasaki T.Ohshima T.Mashima K.Dembinski R. J. Org. Chem. 2008, 73: 5881 -
10a
Burley SK.David PR.Taylor A.Lipscomb WN. Proc. Natl. Acad. Sci. U.S.A. 1990, 87: 6878 -
10b
Roderick SL.Matthews BW. Biochemistry 1993, 32: 3907 -
10c
Chevrier B.Schalk C.D’orchymont H.Rondeau JM.Moras D.Tarnus C. Structure (Cambridge, MA, U.S.) 1994, 2: 283 -
10d
Leopoldini M.Russo N.Toscano M.
J. Am. Chem. Soc. 2007, 129: 7776 - For a general review, see:
-
11a
Multimetallic
Catalysts in Organic Synthesis
Shibasaki M.Yamamoto Y. Wiley-VCH; Weinheim: 2004. - For representative examples of multinuclear zinc catalysts, see:
-
11b
Yoshikawa N.Kumagai N.Matsunaga S.Moll G.Ohshima T.Suzuki T.Shibasaki M. J. Am. Chem. Soc. 2001, 123: 2466 -
11c
Trost BM.Ito H.Silcoff ER. J. Am. Chem. Soc. 2001, 123: 3367 - 13
Otera J. Acc. Chem. Res. 2004, 37: 288 - 16 For a review, see:
Nahmany M.Melman A. Org. Biomol. Chem. 2004, 2: 1563 -
17a
Mukaiyama T.Pai F.-C.Onaka M.Narasaka K. Chem. Lett. 1980, 563 -
17b
Brown BR.Cocker J. J. Chem. Res., Synop. 1984, 2: 46 -
17c
Gardossi L.Bianchi D.Kibanov AM. J. Am. Chem. Soc. 1991, 113: 6328
References and Notes
See Supporting Information for details.
14In a similar way, acidic alcohols, such as 1,1,1,3,3,3-hexafluoropropan-2-ol (pK a 9.3), did not participate in the acylation, see ref. 9c.
15For primary aliphatic alcohol selective acetylation by catalytic transesterification, see ref. 5d,f,i,k,7d,g.
18Yield of 9 was determined after N-Boc protection to simplify the analysis.
19
Typical Experimental
Procedure for the Acetylation of Alcohol 2f
A mixture
of Zn4 (OCOCF3)6O (1,
36 mg, 0.038 mmol),
4-(triethylsiloxymethyl)benzyl alcohol
(2f, 759 mg, 3.0 mmol), and EtOAc (5.0
mL) was refluxed for 18 h under an argon atmosphere. The resulting
mixture was concentrated and purified by silica gel column chromatography
(silica gel, hexane-EtOAc = 20:1
to 4:1) to provide the acetate 3f (790 mg,
89%) as a colorless oil together with unreacted substrate 2f (38 mg, 5%). IR (neat NaCl):
2955, 2876, 1744, 1517, 1458, 1415, 1379, 1362, 1228, 1092, 1019,
971, 820, 742 cm-¹. ¹H
NMR (300 MHz, CDCl3, 35 ˚C): δ = 0.65
(q, J = 7.5
Hz, 6 H, SiCH
2CH3),
0.98 (t, J = 7.5
Hz, 9 H, SiCH2CH
3),
2.08 (s, 3 H, COCH
3), 4.73
(s, 2 H, ArCH
2OSi), 5.09 (s,
2 H, ArCH
2OAc), 7.32 (m, 4
H, Ar). ¹³C NMR (75 MHz, CDCl3,
35 ˚C): δ = 4.51, 6.70,
20.92, 64.39, 66.13, 126.32, 128.21, 134.62, 141.54, 170.76. MS
(EI): m/z (%) = 294
(1) [M+], 265 (62), 145 (100),
103 (39), 75 (20). HRMS (EI): m/z calcd
for C16H26O3Si: 294.1651; found: 294.1646.