Subscribe to RSS
DOI: 10.1055/s-0030-1260946
A Journey through 12 Years
of Interacting Molecules: From Artificial Amino Acid Receptors to
the Recognition of Biomolecules and Switchable
Nanomaterials
Publication History
Publication Date:
14 July 2011 (online)

Abstract
Research in supramolecular chemistry has been carried out in my laboratory for the past 12 years. Intrigued by the fascinating power of supramolecular chemistry, as seen in biomolecular recognition events in nature, we started out by trying to mimic the basic principles of such recognition events in small artificial model systems. Our first targets were amino acids and oligopeptides. We then moved on to proteins and nucleic acids, and we started to develop supramolecular systems that, besides simple binding, also featured functions, e.g. shutting down enzymes or allowing gene delivery into cells. In recent years and in a completely different yet related field, we have begun to develop self-assembling nanomaterials. The basic idea for this derived from an accidental discovery of the interesting self-assembling properties of a simple zwitterion, which was a synthetic intermediate on the route to our amino acid receptors. This personal account summarizes this journey and is intended not only to present the most-important findings from our laboratory so far, but also to shed light on how all these projects developed over the years and how our journey took us to where we are now.
1 Introduction
2 How It All Began
3 The Beginning: The Design of a New Oxoanion Binding Site
4 Tailor-Made Receptors for Small Peptides
5 Combinatorial Development of Peptide Receptors
6 From Small Peptides to Proteins
7 Nucleic Acids as Targets
8 Self-Assembling Zwitterions
9 pH-Switchable Nanostructures
10 Conclusion
Key words
supramolecular chemistry - molecular recognition - self-assembly - host-guest chemistry - combinatorial chemistry
- 1
Roth WR.Staemler V.Neumann N.Schmuck C. Liebigs Ann. 1995, 1061 - 2
Breslow R. Artificial Enzymes Wiley-VCH; Weinheim: 2005. -
3a
Breslow R. J. Phys. Org. Chem. 2006, 19: 813 -
3b
Chandler D. Nature (London) 2005, 437: 640 - 4
Breslow R.Schmuck C. J. Am. Chem. Soc. 1996, 118: 6601 -
5a
Süssmuth RD. Med. Chem. Bioact. Nat. Prod. 2006, 35 -
5b
Nicolaou KC.Boddy CNC.Bräse S.Winssinger N. Angew. Chem. Int. Ed. 1999, 38: 2096 -
5c
Williams DH.Bardsley B. Angew. Chem. Int. Ed. 1999, 38: 1172 - 6
Walsh CT.Fisher SL.Park I.-S.Prahalad M.Wu Z. Chem. Biol. 1996, 3: 21 -
7a
Schneider HJ. Angew. Chem. Int. Ed. Engl. 1993, 32: 848 -
7b
Webb TH.Wilcox CS. Chem. Soc. Rev. 1993, 22: 383 - See also a special issue on molecular recognition:
-
7c
Chem. Rev.
1997,
97:
1231
-
8a
Prins L.-J.Reinhoudt DN.Timmerman P. Angew. Chem. Int. Ed. 2001, 40: 2382 -
8b
Williams DH.Westwell MS. Chem. Soc. Rev. 1998, 27: 57 -
9a
Rehm T.Schmuck C. Chem. Commun. (Cambridge) 2008, 801 -
9b
Oshovsky GV.Reinhoudt DN.Verboom W. Angew. Chem. Int. Ed. 2007, 46: 2366 -
9c
Kubik S.Reyheller C.Stuewe S. J. Incl. Phenom. Macrocycl. Chem. 2005, 52: 137 -
10a
Nicolaou KC.Mitchell HJ.Jain NF.Winssinger N.Hughes R.Bando T. Angew. Chem. Int. Ed. 1999, 38: 240 -
10b
Evans DA.Wood MR.Trotter BW.Richardson TI.Barrow JC.Katz JL. Angew. Chem. Int. Ed. 1998, 37: 2700 -
10c
Evans DA.Dinsmore CJ.Watson PS.Wood MR.Richardson TI.Trotter BW.Katz JL. Angew. Chem. Int. Ed. 1998, 37: 2704 -
10d
Boger DL.Miyazaki S.Heon KimS.Wu JH.Castle SL.Loiseleur O.Jin Q. J. Am. Chem. Soc. 1999, 121: 10004 - 11
McComas CC.Crowley BM.Boger DL. J. Am. Chem. Soc. 2003, 125: 9314 - 12
Schmuck C. Coord. Chem. Rev. 2006, 250: 3053 -
13a
Schmuck C.Bickert V.Merschky M.Geiger L.Rupprecht D.Dudaczek J.Wich P.Rehm T.Machon U. Eur. J. Org. Chem. 2008, 324 -
13b
Schmuck C.Rupprecht D. Synthesis 2007, 3095 - For some examples, see:
-
14a
Schmuck C.Geiger L. Chem. Commun. (Cambridge) 2005, 772 -
14b
Schmuck C.Graupner S. Tetrahedron Lett. 2005, 46: 1295 -
14c
Schmuck C.Machon U. Chem. Eur. J. 2005, 11: 1109 -
14d
Schmuck C.Dudaczek J. Tetrahedron Lett. 2005, 46: 7101 - 15
Schmuck C. Chem. Commun. (Cambridge) 1999, 843 - 16
Schmuck C. Eur. J. Org. Chem. 1999, 2397 - 17
Schmuck C. Chem. Eur. J. 2000, 6: 709 - 18
Moiani D.Cavallotti C.Famulari A.Schmuck C. Chem. Eur. J. 2008, 14: 5207 - 19
Schmuck C.Rupprecht D.Wienand W. Chem. Eur. J. 2006, 12: 9186 - 20
Schmuck C.Wienand W. Synthesis 2002, 655 - 21
Schmuck C.Geiger L. J. Am. Chem. Soc. 2004, 126: 8898 - 22
Murakami Y.Tani M.Ariyasu T.Nshiyama C.Watanabe T.Yokoyama Y. Heterocycles 1988, 27: 1855 - 23
Hynes RO. Cell 2002, 110: 673 - 24
Schmuck C.Rupprecht D.Junkers M.Schrader T. Chem. Eur. J. 2007, 13: 6864 -
25a
Thompson LA.Ellman JA. Chem. Rev. 1996, 96: 555 -
25b
Balkenhohl F.von dem Busche-Hünnefeld C.Lansky A.Zechel C. Angew. Chem. Int. Ed. Engl. 1996, 35: 2288 -
25c
Lowe G. Chem. Soc. Rev. 1995, 24: 309 -
26a
Schreiber SL.Burke MD. Angew. Chem. Int. Ed. 2004, 43: 46 -
26b
Breinbauer R.Vetter IR.Waldmann H. Angew. Chem. Int. Ed. 2002, 41: 2878 - 27
Schmuck C.Wich P. Top. Curr. Chem. 2007, 277: 3 - 28
Schmuck C.Wich P. New J. Chem. 2006, 30: 1377 -
29a
Schmuck C.Heil M. Org. Biomol. Chem. 2003, 1: 633 -
29b
Schmuck C.Heil M. ChemBioChem. 2003, 4: 1232 - 30
Schmuck C.Frey P.Heil M. ChemBioChem 2005, 6: 628 - 31
Schmuck C.Heil M. Chem. Eur. J. 2006, 12: 1339 - 32
Schmuck C.Heil M.Scheiber J.Baumann K. Angew. Chem. Int. Ed. 2005, 44: 7208 - 33
Schmuck C.Wich P. Angew. Chem. Int. Ed. 2006, 45: 4277 - 35
Mammen M.Choi S.-K.Whitesides GM. Angew. Chem. Int. Ed. 1998, 37: 2754 -
36a
Pereira PJB.Bergner A.Macedo-Ribeiro S.Huber R.Matschiner G.Fritz H.Sommerhoff CP.Bode W. Nature (London) 1998, 392: 306 -
36b
Sommerhoff CP.Bode W.Pereira PJB.Stubbs MT.Stürzebecher J.Piechottka GP.Matschiner G.Bergner A. Proc. Natl. Acad. Sci. U.S.A. 1999, 96: 10984 - For some examples, see:
-
37a
Schaschke N.Dominik A.Matschiner G.Sommerhoff CP. Bioorg. Med. Chem. Lett. 2002, 12: 985 -
37b
Selwood T.Elrod KC.Schechter NM. Biol. Chem. 2003, 384: 1605 -
37c
Thongyoo P.Bonomelli C.Leatherbarrow RJ.Tate EW. J. Med. Chem. 2009, 52: 6197 -
37d
Sommerhoff CP.Avrutina O.Schmoldt H.-U.Gabrijelcic-Geiger D.Diederichsen U.Kolmar H. J. Mol. Biol. 2010, 395: 167 - 38
Ohsaki M.Okuda T.Wada A.Hirayama T.Niidome T.Aoyagi H. Bioconjugate Chem. 2002, 13: 510 -
39a
Crowley JI.Rapoport H. J. Am. Chem. Soc. 1970, 92: 6363 -
39b
Crowley JI.Rapoport H. Acc. Chem. Res. 1976, 9: 135 - 40
Machon U.Büchold C.Stempka M.Schirmeister T.Gelhaus C.Leippe M.Gut J.Rosenthal PJ.Kisker C.Leyh M.Schmuck C. J. Med. Chem. 2009, 52: 5662 -
41a
Meldal M. Tetrahedron Lett. 1992, 33: 3077 -
41b
Renil M.Ferreras M.Delaisse JM.Foged NT.Meldal M. J. Pept. Sci. 1998, 4: 195 -
42a
Peczuh MW.Hamilton AD. Chem. Rev. 2000, 100: 2479 -
42b
Zhou H.Baldini L.Hong J.Wilson AJ.Hamilton AD. J. Am. Chem. Soc. 2006, 128: 2421 -
42c
Yin H.Hamilton AD. Angew. Chem. Int. Ed. 2005, 44: 4130 - 43
Wich PR.Schmuck C. Angew. Chem. Int. Ed. 2010, 49: 4113 -
44a
Hernandez-Folgado L.Schmuck C.Tomić S.Piantanida I. Bioorg. Med. Chem. Lett. 2008, 18: 2977 -
44b
Hernandez-Folgado L.Baretić D.Piantanida I.Marjanović M.Kralj M.Rehm T.Schmuck C. Chem. Eur. J. 2010, 16: 3036 -
45a
Dervan PB. Bioorg. Med. Chem. 2001, 9: 2215 -
45b
Dervan PB.Edelson BS. Curr. Opin. Struct. Biol. 2003, 13: 284 - 46
Gröger K.Baretić D.Piantanida I.Marjanović M.Kralj M.Grabar M.Tomić S.Schmuck C. Org. Biomol. Chem. 2011, 9: 198 - 47
Kuchelmeister HY.Schmuck C. Eur. J. Org. Chem. 2009, 4480 - 48
Kuchelmeister HY.Schmuck C. Chem. Eur. J. 2011, 17: 5311 - For some selected examples, see:
-
49a
Bazzicalupi C.Bencini A.Biagini S.Faggi E.Meini S.Giorgi C.Spepi A.Valtancoli B. J. Org. Chem. 2009, 74: 7349 -
49b
Delépine A.-S.Tripier R.Handel H. Org. Biomol. Chem. 2007, 6: 1743 -
49c
Baudoin O.Gonnet F.Teulade-Fichou M.-P.Vigneron J.-P.Tabet J.-C.Lehn J.-M. Chem. Eur. J. 1999, 5: 2762 -
49d
Niikura K.Metzger A.Anslyn EV. J. Am. Chem. Soc. 1998, 120: 8533 -
49e
Sebo L.Diederich F. Helv. Chim. Acta 2000, 83: 93 - 50
Schmuck C.Wienand W. J. Am. Chem. Soc. 2003, 125: 452 - 51
Schlund S.Schmuck C.Engels B. J. Am. Chem. Soc. 2005, 127: 11115 - 52 For one of the first examples, see:
Carter PJ.Winter G.Wilkinson AJ.Fersht AR. Cell 1984, 38: 835 - 53
Cockroft SL.Hunter CA. Chem. Soc. Rev. 2007, 36: 172 - 54
Rether C.Sicking W.Boese R.Schmuck C. Beilstein J. Org. Chem. 2010, 6: No. 3 - 55
Schmuck C.Bickert V. Org. Lett. 2003, 5: 4579 - 56
Kolb HC.Finn MG.Sharpless BK. Angew. Chem. Int. Ed. 2001, 40: 2004 - 57
Schmuck C.Rehm T.Gröhn F.Klein K.Reinhold F. J. Am. Chem. Soc. 2006, 128: 1430 - 58
Schmuck C.Rehm T.Klein K.Gröhn F. Angew. Chem. Int. Ed. 2007, 46: 1693 - 59
Fuhrhop J.-H.Wang T. Chem. Rev. 2004, 104: 2901 - For some selected examples, see:
-
60a
Reches M.Gazit E. Science (Washington, DC, U.S.) 2003, 300: 625 -
60b
Kol N.Adler-Abramovich L.Berlam D.Shneck R.Gazit E.Rousso I. Nano Lett. 2005, 5: 1343 -
60c
Gosh S.Reches M.Gazit E.Verma S. Angew. Chem. Int. Ed. 2007, 46: 2002 -
60d
Yan X.He Q.Wang K.Duan L.Cui Y.Li J. Angew. Chem. Int. Ed. 2007, 46: 2431 - 61
Rehm T.Stepanenko V.Zhang X.Würthner F.Gröhn F.Klein K.Schmuck C. Org. Lett. 2008, 10: 1469 - 62
Rodler F.Linders J.Fenske T.Rehm T.Mayer C.Schmuck C. Angew. Chem. Int. Ed. 2010, 49: 8747 -
63a
Ravoo BJ.Darcy R. Angew. Chem. Int. Ed. 2000, 39: 4324 -
63b
Voskuhl J.Ravoo BJ. Chem. Soc. Rev. 2009, 38: 495 - 64
Voskuhl J.Fenske T.Stuart MCA.Wibbeling B.Schmuck C.Ravoo BJ. Chem. Eur. J. 2010, 16: 8300 - 65
Rehm T.Schmuck C. Chem. Soc. Rev. 2010, 39: 3597 - 66
Merschky M.Wyszogrodzka M.Haag R.Schmuck C. Chem. Eur. J. 2010, 16: 14242 - 67
Gröger G.Stepanenko V.Würthner F.Schmuck C. Chem. Commun. (Cambridge) 2009, 698 -
68a
Hofmeier H.Schubert US. Chem. Commun. (Cambridge) 2005, 2423 -
68b
Schmittel M.Mahata K. Angew. Chem. Int. Ed. 2008, 47: 5284 -
69a
Ciferri A. Macromol. Rapid Commun. 2002, 23: 511 -
69b
de Greef TFA.Smudlers MMJ.Wolffs M.Schenning APHJ.Sijbesma RP.Meijer EW. Chem. Rev. 2009, 109: 5687 -
69c
ten Cate AT.Sijbesma RP. Macromol. Rapid Commun. 2002, 23: 1094 - 70
Sijbesma RP.Beijer FH.Brunsveld L.Folmer BJB.Hirschberg JHKK.Lange RF.Lowe JKL.Meijer EW. Science (Washington, DC, U.S.) 1997, 278: 1601
References
The term ‘Gulliver effect’ is often used in supramolecular chemistry to describe the simultaneous effect of several weak interactions for binding a substrate: See also ref. 8a