Synlett 2012; 23(19): 2768-2772
DOI: 10.1055/s-0032-1317708
cluster
© Georg Thieme Verlag Stuttgart · New York

Cafestol to Tricalysiolide B and Oxidized Analogues: Biosynthetic and Derivatization Studies Using Non-heme Iron Catalyst Fe(PDP)

Marinus A. Bigi
a   Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, IL 61801, USA   Fax: +1(217)2445943   Email: white@scs.uiuc.edu
,
Peng Liu
b   Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA   Fax: +(310)2061843   Email: houk@chem.ucla.edu
,
Lufeng Zou
b   Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA   Fax: +(310)2061843   Email: houk@chem.ucla.edu
,
K. N. Houk*
b   Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA   Fax: +(310)2061843   Email: houk@chem.ucla.edu
,
M. Christina White*
a   Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, IL 61801, USA   Fax: +1(217)2445943   Email: white@scs.uiuc.edu
› Author Affiliations
Further Information

Publication History

Received: 19 October 2012

Accepted after revision: 09 November 2012

Publication Date:
14 November 2012 (online)


Abstract

The tricalysiolides are a recently isolated class of di­terpene natural products featuring the carbon backbone of the well-known coffee extract, cafestol. Herein we validate the use of our non-heme iron complex, Fe(PDP), as an oxidative tailoring enzyme mimic to test the proposal that this class of natural products derives from cafestol via cytochrome P-450-mediated furan oxidation. Thereafter, as predicted by computational analysis, C–H oxidation derivatization studies provided a novel 2° alcohol product as a single diastereomer.

Supporting Information

 
  • References and Notes

  • 1 Denisov IG, Makris TM, Sligar SG, Schlichting I. Chem. Rev. 2005; 105: 2253
  • 4 Chen MS, White MC. Science 2007; 318: 783
  • 5 Chen MS, White MC. Science 2010; 327: 566
  • 6 White MC, Doyle AG, Jacobsen EN. J. Am. Chem. Soc. 2001; 123: 7194
  • 7 Chen K, Que LJr. J. Am. Chem. Soc. 2001; 123: 6327
  • 8 Bigi MA, Reed SA, White MC. Nat. Chem. 2011; 3: 218
  • 9 Pochapsky TC, Kazanis S, Dang M. Antioxid. Redox Signaling 2010; 13: 1273
  • 10 Gross G, Jaccaud E, Huggett AC. Food Chem. Toxicol. 1997; 35: 547
  • 11 Nishimura K, Hitotsuyanagi Y, Sugeta N, Sakakura K, Fujita K, Fukaya H, Aoyagi Y, Hasuda T, Kinoshita T, He D.-H, Otsuka H, Takeda Y, Takeya K. Tetrahedron 2006; 62: 1512
  • 12 Nishimura K, Hitotsuyanagi Y, Sakakura K, Fujita K, Tachihara S, Fukaya H, Aoyagi Y, Hasuda T, Kinoshita T, Takeya K. Tetrahedron 2007; 63: 4558
  • 13 Bigi MA, Reed SA, White MC. J. Am. Chem. Soc. 2012; 134: 9721
  • 14 White MC. Science 2012; 335: 807
  • 16 Kurzrock T, Speer K. Food Rev. Int. 2001; 17: 433
  • 17 Cavin C, Holzhaeuser D, Scharf G, Constable A, Huber WW, Schilter B. Food Chem. Toxicol. 2002; 40: 1155
  • 18 Trinh K, Andrews L, Krause J, Hanak T, Lee D, Gelb M, Pallanck L. J. Neurosci. 2010; 30: 5525
  • 19 Guengerich FP. Arch. Biochem. Biophys. 2003; 409: 59
  • 20 Bertholet, R.; US 4692534, 1987.
  • 21 No differences in reactivity or selectivity have been observed running Fe(PDP) oxidations under N2 or Ar atmosphere vs. running the reaction open to air. This along with the stereoretentive nature of oxidation suggests the reaction does not proceed via hydroxyl radicals or a long-lived carbon radical intermediate.
  • 22 Bal BS, Childers WE. Jr, Pinnick HW. Tetrahedron 1981; 37: 2091
  • 23 vanCruchten ST. J, deHaan LH. J, Mulder PP. J, Kunne C, Boekschoten MV, Katan MB, Aarts JM. M. J. G, Witkamp RF. J. Nutr. Biochem. 2010; 21: 757
  • 24 MacroModel, version 9.9; Schrödinger LLC: New York, 2011.
  • 25 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision B.01 2009;
  • 26 NPA charges were calculated using B3LYP/6-311++G(d,p). Mulliken charges were calculated using B3LYP/6-31G(d) (see Supporting Information) and provided an analogous trend to the NPA charges. Mulliken charges are an excellent alternative when minimizing computation power and time are a consideration.��
  • 27 These steric and electronic property analyses were all based on calculations of the reactant molecule. Density functional theory (DFT) calculations of transition-state structures and selectivities are under way in our labs to verify these selectivity rules.