Synlett 2013; 24(10): 1225-1228
DOI: 10.1055/s-0033-1338494
cluster
© Georg Thieme Verlag Stuttgart · New York

Organocatalytic Aerobic Oxidative Cleavage of Cyclic 1,2-Diketones

Sivaji Gundala
Trinity Biomedical Sciences Institute, School of Chemistry, The University of Dublin, Trinity College, Dublin 2, Ireland   Fax: +353(1)6712826   Email: connons@tcd.ie
,
Claire-Louise Fagan
Trinity Biomedical Sciences Institute, School of Chemistry, The University of Dublin, Trinity College, Dublin 2, Ireland   Fax: +353(1)6712826   Email: connons@tcd.ie
,
Eoghan G. Delany
Trinity Biomedical Sciences Institute, School of Chemistry, The University of Dublin, Trinity College, Dublin 2, Ireland   Fax: +353(1)6712826   Email: connons@tcd.ie
,
Stephen J. Connon*
Trinity Biomedical Sciences Institute, School of Chemistry, The University of Dublin, Trinity College, Dublin 2, Ireland   Fax: +353(1)6712826   Email: connons@tcd.ie
› Author Affiliations
Further Information

Publication History

Received: 02 May 2013

Accepted after revision: 27 May 2013

Publication Date:
04 June 2013 (online)


Abstract

The first organocatalytic aerobic oxidative cleavage of cyclic 1,2-diketones is reported. The reaction occurs in either aqueous or alcoholic media and is promoted by a simple N-heterocyclic carbene catalyst derived from a 1,2,4-triazolium ion. No strong oxidants are required. The application of the process in a one-pot synthesis of a cyclic anhydride is also possible.

Supporting Information

 
  • References and Notes

  • 1 Yan J, Travis BR, Borhan B. J. Org. Chem. 2004; 69: 9299
  • 2 Nwaukwa SO, Keehn PM. Tetrahedron Lett. 1982; 23: 3135
  • 3 Balogh-Hergovich E, Speier G, Tyeklar Z. Synthesis 1982; 731
  • 4 Yasuhiko S, Foote CS. J. Am. Chem. Soc. 1983; 105: 5035
  • 5 Yang DT. C, Evans TT, Yamazaki F, Narayanna C, Kabalka GW. Synth. Commun. 1993; 23: 1183
  • 6 Barbas JT, Sigman ME, Dabestani R. Environ. Sci. Technol. 1996; 30: 1776
  • 7 This work was concerned with the oxidative cleavage of acyloins. A single example involving an α-dione was reported: Kirihara M, Takizawa S, Momose T. J. Chem. Soc., Perkin Trans. 1 1998; 7
  • 8 Recently, the organocatalytic (TEMPO-mediated in the presence of NaClO2) oxidative cleavage of diols has been accomplished, see: Shibuya M, Doi R, Shibuta T, Uesugi S.-I, Iwabuchi Y. Org. Lett. 2012; 14: 5006
  • 9 Noonan C, Baragwanath L, Connon SJ. Tetrahedron Lett. 2008; 49: 4003
    • 10a Delany EG, Fagan C.-L, Gundala S, Mari A, Broja T, Zeitler K, Connon SJ. Chem. Commun. 2013; 49 in press
    • 10b Delany EG, Fagan C.-L, Gundala S, Zeitler K, Connon SJ. Chem. Commun. 2013; 49 in press
  • 13 For a recent example of the use of 1,2-dicarbonyl compounds as reaction components in the NHC-mediated acyloin condensation, see: Rose CA, Gundala S, Fagan C.-L, Franz JF, Connon SJ, Zeitler K. Chem. Sci. 2012; 3: 73
  • 14 It is unclear at this juncture why the reactions involving MeOH are reproducibly less efficient than their variants in aqueous media. Investigations into this phenomenon are under way.
  • 15 General Procedure for the Esterification of Cyclic DiketonesTo a 25 mL vial equipped with a magnetic stirring bar was charged the triazolium precatalyst 4 (18 mg, 0.07 mmol, 15 mol%). Dry THF (1.25 mL) and deionised H2O (62.5 μL) were added. DBU (170.0 μL, 1.10 mmol, 220 mol%) was added, and the solution was stirred for 2 min. The aromatic diketone (0.50 mmol) was then added. The vessel was sealed with a plastic lid perforated by 4 holes (ca. 2 mm in diameter). After stirring for 20 h at r.t., MgSO4 (1.40 mmol, 170 mg) and 5.0 equiv of MeI were added, and the resulting mixture was stirred for 12 h. The solvent was then removed in vacuo, and the resulting residue was subjected to flash chromatography to yield the diester product.Dimethyl Biphenyl-2,2′-dicarboxylate (8)Prepared according to the general procedure using phenanthrene-9,10-dione (7, 104.11 mg, 0.50 mmol). Purified via flash chromatography (n-hexane–EtOAc, 9:1), 110 mg (82%) as a pale yellow solid; mp 73–75 °C (lit.16 74–75 °C). 1H NMR (400 MHz, CDCl3): δ = 7.98 (d, J = 7.6 Hz, 2 H), 7.51 (app. t, 2 H), 7.40 (app. t, 2 H), 7.18 (d, J = 7.6 Hz, 2 H), 3.59 (s, 6 H). HRMS: (ESI+): m/z calcd for C16H15O4: 271.0970; found: 271.0984.Dimethyl 4,4′-Dinitrobiphenyl-2,2′-dicarboxylate (16)Prepared according to the general procedure using 2,7-dinitro-9,10-phenanthrenequinone (10, 149.10 mg, 0.50 mmol). Purified via flash chromatography (n-hexane–EtOAc, 9:1), 144 mg (80%) as a white solid; mp 178–180 °C (lit.17 182–183 °C). 1H NMR (400 MHz, CDCl3): δ = 8.94 (d, J = 2.3 Hz, 2 H), 8.45 (dd, J = 2.3, 8.5 Hz, 2 H), 7.37 (d, J = 8.5 Hz, 2 H), 3.76 (s, 6 H).Dimethyl Naphthalene-1,8-dicarboxylate (19)Prepared according to the general procedure using 13 (91.02 mg, 0.50 mmol). Purified via flash chromatography (n-hexane–EtOAc, 9:1), 80 mg (66%) as a pale yellow solid; mp 100–104 °C (lit.18 102–103 °C). 1H NMR (400 MHz, CDCl3): δ = 8.00–7.97 (m, 4 H), 7.53 (app t, 2 H), 3.90 (s, 6 H). HRMS: (ESI+): m/z calcd for C14H13O4: 245.0814; found: 245.0817.
  • 16 Martinek M, Korf M, Srogl J. Chem. Commun. 2010; 46: 4387
  • 17 Leung M.-K, Yang C.-C, Lee J.-H, Tsai H.-H, Lin C.-F, Huang C.-Y, Su YO, Chiu C.-F. Org. Lett. 2007; 9: 235
  • 18 Van Dorp B. Justus Liebigs Ann. Chem. 1874; 172: 270