Subscribe to RSS
DOI: 10.1055/s-0033-1339509
Convenient Syntheses of Enantiopure 1,2-Oxazin-4-yl Nonaflates and Phosphates and Their Palladium-Catalyzed Cross-Couplings
Publication History
Received: 14 June 2013
Accepted after revision: 12 July 2013
Publication Date:
06 August 2013 (online)
Abstract
Efficient methods to prepare enantiopure 1,2-oxazin-4-yl nonaflates and phosphates were elaborated. The corresponding 1,2-oxazin-4-ones were transformed into their enolates and then quenched with nonafluorobutanesulfonyl fluoride or diphenyl chlorophosphate to provide the title compounds. Alternatively, the corresponding α-bromo ketones were subjected to Perkow reactions efficiently leading to the respective enol phosphates. A variety of palladium-catalyzed cross-couplings such as Kumada–Corriu, Sonogashira, Heck reactions or borylation reactions were studied, which delivered the expected new 4-substituted 1,2-oxazine derivatives generally in satisfactory yields. A few typical subsequent transformations were studied including a copper-catalyzed [3+2] cycloaddition with a galactose-derived azide. They demonstrate the synthetic potential of the newly prepared enantiopure 4-substituted 1,2-oxazines.
Key words
1,2-oxazines - nonaflates - enol phosphates - cross-coupling reaction - amino alcohol - triazolesSupporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synthesis. Included are the remaining experimental details and copies of selected spectra.
- Supporting Information
-
References
- 1a Streith J, Defoin A. Synthesis 1994; 1107
- 1b Streith J, Defoin A. Synlett 1996; 189
- 1c Yamamoto Y, Yamamoto H. Eur. J. Org. Chem. 2006; 2031
- 1d Reissig H.-U, Dugovič B, Zimmer R In Science of Synthesis . Vol. 41. Banert K. Thieme; Stuttgart: 2009: 259
- 1e Bodnar BS, Miller MJ. Angew. Chem. Int. Ed. 2011; 50: 5629 ; Angew. Chem. 2011, 123, 5746
- 2a Durham R, Mandel J, Blanchard N, Tam W. Can. J. Chem. 2011; 89: 1494
- 2b Kumarn S, Shawn DM, Longbottom DA, Ley SV. Org. Lett. 2005; 7: 4189
- 3a Gilchrist TL. Chem. Soc. Rev. 1983; 12: 53
- 3b Lyapkalo IM, Ioffe SL. Russ. Chem. Rev. 1998; 67: 467
- 3c Tsoungas PG. Heterocycles 2002; 57: 915
- 3d Reissig H.-U, Zimmer R In Science of Synthesis . Vol. 33. Molander GA. Thieme; Stuttgart: 2007: 371
- 3e Sukhorukov AYu, Ioffe SL. Chem. Rev. 2011; 111: 5004
- 4a Reissig H.-U, Hippeli C, Arnold T. Chem. Ber. 1990; 123: 2403
- 4b Reissig H.-U, Homann K, Hiller F, Zimmer R. Synthesis 2007; 2681
- 4c Zimmer R, Collas M, Czerwonka R, Hain U, Reissig H.-U. Synthesis 2008; 237
- 4d Lemos A, Lourenco JP. Tetrahedron Lett. 2009; 50: 1311
- 4e Zimmer R, Schmidt E, Andrä M, Duhs M.-A, Linder I, Reissig H.-U. Beilstein J. Org. Chem. 2009; 5: No. 44
- 4f Lopes SM. M, Lemos A, Pinho e Melo TM. V. D. Tetrahedron Lett. 2010; 51: 6756
- 4g Zimmer R, Buchholz M, Collas M, Angermann J, Homann K, Reissig H.-U. Eur. J. Org. Chem. 2010; 4111
- 4h Lemos A, Lourenco JP. ARKIVOC 2010; (v): 170
- 4i Linder I, Gerhard M, Schefzig L, Andrä M, Bentz C, Reissig H.-U, Zimmer R. Eur. J. Org. Chem. 2011; 6070
- 4j Lopes SM. M, Palacios F, Lemos A, Pinho e Melo TM. V. D. Tetrahedron 2011; 67: 8902
- 4k Yioti EG, Mati IK, Arvanitidis AG, Massen ZS, Alexandraki ES, Gallos JK. Synthesis 2011; 142
- 4l Massen ZS, Coutoulin-Argyropoulou E, Sarli VC, Gallos JK. Carbohydr. Res. 2011; 346: 508
- 4m Zhang Y, Stephens D, Hernandez G, Mendoza R, Larionov OV. Chem. Eur. J. 2012; 18: 16612
- 4n Massen ZS, Gallos JK. J. Heterocycl. Chem. 2012; 49: 1214
- 4o Zhang Y, Stephens D, Hernandez G, Mendoza R, Larionov OV. Chem. Eur. J. 2012; 18: 16612
- 5a Young IS, Kerr MA. Angew. Chem. Int. Ed. 2003; 42: 3023 ; Angew. Chem. 2003, 115, 3121
- 5b Carson CA, Young IS, Kerr MA. Synthesis 2008; 485
- 5c Dias DA, Kerr MA. Org. Lett. 2009; 11: 3694
- 5d Humenny WJ, Kyriacou P, Sapeta K, Karadeolian A, Kerr MA. Angew. Chem. Int. Ed. 2012; 51: 11088 ; Angew. Chem. 2012, 124, 11250
- 5e Carson CA, Kerr MA. Chem. Soc. Rev. 2009; 38: 3051
- 6a Wang X, Xu X, Zavalij PY, Doyle MP. J. Am. Chem. Soc. 2011; 133: 16402
- 6b Qian Y, Xu X, Wang X, Zavalij PJ, Hu W, Doyle MP. Angew. Chem. Int. Ed. 2012; 51: 5900 ; Angew. Chem. 2012, 124, 6002
- 6c Yang H.-B, Shi M. Org. Biomol. Chem. 2012; 10: 8236
- 7 Schade W, Reissig H.-U. Synlett 1999; 632
- 8a Bressel B, Egart B, Al-Harrasi A, Pulz R, Reissig H.-U, Brüdgam I. Eur. J. Org. Chem. 2008; 467
- 8b Bressel B, Reissig H.-U. Org. Lett. 2009; 11: 527
- 8c Dekaris V, Reissig H.-U. Synlett 2010; 42
- 8d Dekaris V, Bressel B, Reissig H.-U. Synlett 2010; 47
- 8e Al-Harrasi A, Fischer S, Zimmer R, Reissig H.-U. Synthesis 2010; 304
- 8f Al-Harrasi A, Bouché L, Zimmer R, Reissig H.-U. Synthesis 2011; 109
- 8g Dekaris V, Pulz R, Al-Harrasi A, Lentz D, Reissig H.-U. Eur. J. Org. Chem. 2011; 3210
- 8h Jasiński M, Lentz D, Reissig H.-U. Beilstein J. Org. Chem. 2012; 8: 662
- 8i Jasiński M, Lentz D, Moreno-Clavijo E, Reissig H.-U. Eur. J. Org. Chem. 2012; 3304
- 8j Jasiński M, Watanabe T, Reissig H.-U. Eur. J. Org. Chem. 2013; 605
- 9a Brasholz M, Reissig H.-U, Zimmer R. Acc. Chem. Res. 2009; 42: 45
- 9b Pfrengle F, Reissig H.-U. Chem. Soc. Rev. 2010; 39: 381
- 9c Bouché L, Reissig H.-U. Pure Appl. Chem. 2012; 84: 23
- 10a Al-Harrasi A, Pfrengle F, Prisyazhnyuk V, Yekta S, Koóš P, Reissig H.-U. Chem. Eur. J. 2009; 15: 11632
- 10b Pfrengle F, Lentz D, Reissig H.-U. Angew. Chem. Int. Ed. 2009; 48: 3165 ; Angew. Chem. 2009, 121, 3211
- 10c Pfrengle F, Reissig H.-U. Chem. Eur. J. 2010; 16: 11915
- 10d Roskamp M, Enders S, Pfrengle F, Yekta S, Dekaris V, Dernedde J, Reissig H.-U, Schlecht S. Org. Biomol. Chem. 2011; 9: 7448
- 11 Pulz R, Schade W, Reissig H.-U. Synlett 2003; 405
- 12 Barrero AF, Alvarez-Manzaneda EJ, Chahboun R, Meneses R, Romera JL. Synlett 2001; 485
- 13 Ballestri M, Chatgilialoglu C, Clark KB, Griller D, Giese B, Kopping B. J. Org. Chem. 1991; 56: 678
- 14 For the selective cleavage of the isopropylidene acetal of 1,2-oxazines such as syn- or anti-1 using InCl3 and H2O, see: Pfrengle F, Dekaris V, Schefzig L, Zimmer R, Reissig H.-U. Synlett 2008; 2965
- 15 Helms M, Schade W, Pulz R, Watanabe T, Al-Harrasi A, Fišera L, Hlobilová I, Zahn G, Reissig H.-U. Eur. J. Org. Chem. 2005; 1003
- 16 For a comprehensive review, see: Högermeier J, Reissig H.-U. Adv. Synth. Catal. 2009; 351: 2747
- 17a Zimmer R, Webel M, Reissig H.-U. J. Prakt. Chem. 1998; 340: 274
- 17b Vorbrüggen H. Synthesis 2008; 1165
- 18a Lichtenthaler FW. Chem. Rev. 1961; 61: 607
- 18b Thiem J, Günther M, Paulsen H. Chem. Ber. 1975; 108: 2279
- 18c Occhiato EG. Mini-Rev. Org. Chem. 2004; 1: 149
- 18d Protti S, Fagnoni M. Chem. Commun. 2008; 3611
- 18e Knappke CE. I, Jacobi von Wangelin A. Chem. Soc. Rev. 2011; 40: 4948
- 18f Sellars JD, Steel PG. Chem. Soc. Rev. 2011; 40: 5170
- 18g Li B.-J, Yu D.-G, Sun C.-L, Shi Z.-J. Chem. Eur. J. 2011; 17: 1728
- 19 Blaszczak L, Winkler J, O’Kuhn S. Tetrahedron Lett. 1976; 4405
- 20a Berndt M, Hölemann A, Niermann A, Bentz C, Zimmer R, Reissig H.-U. Eur. J. Org. Chem. 2012; 1299
- 20b McDonald C, Ramsey JD, Sampsell DG, Butler JA, Cecchini MR. Org. Lett. 2010; 12: 5178
- 21 The proposed structure of by-product 8 is supported by the analytical and spectroscopic data. Currently the formation of 8 under the reaction conditions employed is still not fully understood.
- 22a Perkow W, Ullerich K, Meyer F. Naturwissenschaften 1952; 39: 353
- 22b Gaydou EM, Bianchini JP. J. Chem. Soc., Chem. Commun. 1975; 541
- 23 The structure of (5R)-2 was unambiguously assigned since the analytical data of the corresponding (5S)-2 diastereomer are known including an X-ray analysis: Pulz R, Schade W, Reissig H.-U, Rademacher O. Z. Kristallogr.- New Cryst. Struct. 2000; 215: 73
- 24a Larsen US, Martiny L, Begtrup M. Tetrahedron Lett. 2005; 46: 4261
- 24b Miller JA. Tetrahedron Lett. 2002; 43: 7111
- 25 Gauthier D, Beckendorf S, Gǿgsig TM, Lindhardt AT, Skrydstrup T. J. Org. Chem. 2009; 74: 3536
- 26a Seijas J, Vazquez MP. Chim. Oggi 2007; 25: 20
- 26b Practical Microwave Synthesis for Organic Chemists . Kappe CO, Dallinger D, Murphree SS. Wiley-VCH; Weinheim: 2009
- 26c Caddick S, Fitzmaurice R. Tetrahedron 2009; 65: 3325
- 26d Gupta M, Paul S, Gupta R. Acta Chim. Slov. 2009; 56: 749
- 26e Polshettiwar V, Nadagouda MN, Varma RS. Aust. J. Chem. 2009; 62: 16
- 27 Moinizadeh N. Staatsexamensarbeit . Freie Universität Berlin; Germany: 2006
- 28a Kumada M, Hayashi T, Fujiwa T, Okamoto Y, Katsuro Y. Synthesis 1981; 1001
- 28b Yang N, Zhen Y. Tetrahedron Lett. 1999; 40: 3321
- 28c Bäckvall JE, Sofia A, Kalström E, Itami K. J. Org. Chem. 1999; 64: 1745
- 29a Sonogashira K In Handbook of Organopalladium Chemistry for Organic Synthesis . Negishi E.-i, de Meijere A. Wiley; New York: 2002: 493
- 29b Negishi E.-i, Anastasia L. Chem. Rev. 2003; 103: 1979
- 29c Chincilla R, Najera C. Chem. Soc. Rev. 2011; 40: 5084
- 29d Bakherad M. Appl. Organomet. Chem. 2013; 27: 125
- 29e Jie X, Shang Y, Hu P, Su W. Angew. Chem. Int. Ed. 2013; 52: 3630 ; Angew. Chem. 2013, 125, 3718
- 30 For Sonogashira couplings of 4-bromo-6H-1,2-oxazines, see ref. 4e.
- 32a Chrystal EJ. T, Gilchrist TL, Stretch W. J. Chem. Res., Miniprint 1987; 1563
- 32b Zimmer R, Reissig H.-U. Angew. Chem., Int. Ed. Engl. 1988; 27: 1518 ; Angew. Chem. 1988, 100, 1576
- 32c Hippeli C, Zimmer R, Reissig H.-U. Liebigs Ann. Chem. 1990; 469
- 32d Zimmer R, Collas M, Roth M, Reissig H.-U. Liebigs Ann. Chem. 1992; 709
- 32e Zimmer R, Reissig H.-U. J. Org. Chem. 1992; 57: 339
- 32f Kefalas P, Grierson DS. Tetrahedron Lett. 1993; 34: 3555
- 32g Nakanishi S, Otsuji Y, Itoh K, Hayashi N. Bull. Chem. Soc. Jpn. 1995; 63: 3595
- 32h Buchholz M, Reissig H.-U. Eur. J. Org. Chem. 2003; 3524
- 32i Calvet G, Blanchard N, Kouklovsky C. Synthesis 2005; 3346
- 32j Sukhorukov AYu, Lesiv AV, Khomutova YuA, Ioffe SL. Synthesis 2008; 1205
- 32k Tripoteau F, Eberlin L, Fox MA, Carboni B, Whiting A. Chem. Commun. 2013; 49: 5414
- 32l See also refs. 4c, 8j, 11.
- 33a Takagi J, Takahashi K, Ishiyama T, Miyaura N. J. Am. Chem. Soc. 2002; 124: 8001
- 33b Takagi J, Kamon A, Ishiyama T, Miyaura N. Synlett 2002; 1880
- 34a Ishiyama TMiyaura N. J. Organomet. Chem. 2000; 611: 392
- 34b Murata M, Oyama T, Watanabe S, Masuda Y. J. Org. Chem. 2000; 65: 164
- 35 Pulz R, Watanabe T, Schade W, Reissig H.-U. Synlett 2000; 983
- 36a Pulz R. Ph.D. Thesis . Freie Universität Berlin; Germany: 2002
- 36b Helms M. Ph. D. Thesis . Freie Universität Berlin; Germany: 2005
- 36c Bressel B. Ph.D. Thesis . Freie Universität Berlin; Germany: 2008
- 37 In several highly substituted 1,2-oxazine derivatives, fairly slow hydrogenolyses have been observed: Koóš, P.; Bouché, L.; Kandziora, M.; Salta, J.; Reissig, H.-U., unpublished results.
- 38 El Meslouti A, Beaupère D, Demailly G, Uzan R. Tetrahedron Lett. 1994; 35: 3913
Reviews:
For recently published articles, see:
For an enantioselective synthesis of 3,6-dihydro-2H-1,2-oxazines using a chiral organocatalyst, see:
Reviews:
For recently published articles, see:
For an enantioselective synthesis of 1,2-oxazines, see:
Review:
Recently published articles:
Reviews:
For recently published articles, see:
Reviews for the general reactivity of NfF, see:
Reviews on synthesis and application of enol phosphates, see:
Replacement of the carcinogenic HMPA by tripyrrolidino-phosphoric acid triamide (TPPA) as a suitable HMPA substitute did not lead to satisfactory results (24% of syn-7a and 1% of the by-product 8). For TPPA as a possible substitute for HMPA, see:
For a related one-pot reaction of Grignard reagents and in situ generated enol phosphates, see:
Reviews on microwave-assisted chemistry:
For selected reviews, see:
Conversions of 1,2-oxazines into pyrroles are well-known; for typical examples, see:
For example, see: