Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2014; 25(16): 2316-2318
DOI: 10.1055/s-0034-1379180
DOI: 10.1055/s-0034-1379180
cluster
Insertion of Imines into Vinylcyclopropanes Catalyzed by Nucleophilic Iron Complexes: A Formal [3+2]-Cycloaddition Strategy for the Synthesis of Substituted Pyrrolidine Derivatives
Further Information
Publication History
Received: 28 July 2014
Accepted after revision: 29 August 2014
Publication Date:
08 September 2014 (online)
Abstract
Pyrrols are substructures in various biological active molecules. A straightforward iron-catalyzed synthesis of pyrrols via insertion of an imine into a vinylcyclopropane is presented. The corresponding pyrrols are obtained in moderate to good yields. Scope and limitations will be discussed.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/products/ejournals/journal/ 10.1055/s-00000083.
- Supporting Information
-
References and Notes
- 1a Yamamoto Y. Chem. Soc. Rev. 2014; 43: 1575
- 1b Gulevich AV, Dudnik AS, Chernyak N, Gevorgyan V. Chem. Rev. 2013; 113: 3084
- 1c Patil NT, Yamamoto Y. Chem. Rev. 2008; 108: 3395
- 1d D’Souza DM, Müller TJ. Chem. Soc. Rev. 2007; 36: 1095
- 1e Nakamura I, Yamamoto Y. Chem. Rev. 2004; 104: 2127
- 2a Müller TE, Beller M. Chem. Rev. 1998; 98: 675
- 2b Alonso F, Beletskaya IP, Yus M. Chem. Rev. 2004; 104: 3079
- 2c Müller TE, Hultzsch KC, Yus M, Foubelo F, Tada M. Chem. Rev. 2008; 108: 3795
- 2d Zeng X. Chem. Rev. 2013; 113: 6864
- 3 For a recent review, see: Carson CA, Kerr MA. Chem. Soc. Rev. 2009; 38: 3051
- 4 de Meijere A. Angew. Chem., Int. Ed. Engl. 1979; 18: 809
- 5 For a recent review on donor–acceptor cyclopropanes, see: Schneider TF, Kaschel J, Werz DB. Angew. Chem. Int. Ed. 2014; 53: 5504
- 6a Chakrabarty S, Chatterjee I, Wibbeling B, Daniliuc CG, Studer A. Angew. Chem. Int. Ed. 2014; 53: 5964
- 6b Pohlhaus PD, Sanders SD, Parsons AT, Li W, Johnson JS. J. Am. Chem. Soc. 2008; 130: 8642
- 6c Lifchits O, Charette AB. Org. Lett. 2008; 10: 2809
- 6d Bowman RK, Johnson JS. Org. Lett. 2006; 8: 573
- 6e Harvey DF, Brown MF. Tetrahedron Lett. 1991; 32: 2871
- 7a Trost BM, Morris PJ, Sprague SJ. J. Am. Chem. Soc. 2012; 134: 17823
- 7b Goldberg AF, Stoltz BM. Org. Lett. 2011; 13: 4474
- 8 Parsons AT, Campbell MJ, Johnson JS. Org. Lett. 2008; 10: 2541
- 9 Yamamoto K, Ishida T, Tsuji J. Chem. Lett. 1987; 1157
- 10 Tombe R, Kurahashi T, Matsubara S. Org. Lett. 2013; 15: 1791
- 11 Dieskau AP, Holzwarth MS, Plietker B. J. Am. Chem. Soc. 2012; 134: 5048
- 12a Plietker B. Angew. Chem. Int. Ed. 2006; 45: 1469
- 12b Magens S, Ertelt M, Jatsch A, Plietker B. Org. Lett. 2008; 10: 53
- 12c Plietker B, Dieskau A, Mows K, Jatsch A. Angew. Chem. Int. Ed. 2008; 47: 198
- 12d Jegelka M, Plietker B. Org. Lett. 2009; 11: 3462
- 12e Dieskau AP, Begouin J.-M, Plietker B. Eur. J. Org. Chem. 2011; 5291
- 12f Dieskau AP, Holzwarth MS, Plietker B. Chem. Eur. J. 2012; 18: 2423
- 12g Rommel S, Dieskau AP, Plietker B. Eur. J. Org. Chem. 2013; 1790
- 13 General Procedure Ligand L5 (0.04 mmol) was placed in a 10 mL Schlenk tube and dissolved in THF (1 mL). NaNH2 (0.05 mmol) was added, and the reaction mixture was stirred at r.t. for 45 min, after which TBA[Fe] (0.04 mmol) was added. The reaction mixture was stirred for 1 h at 80 °C to allow the ligand to coordinate. Afterwards the vinylcyclopropane (0.4 mmol) and the imine (0.5 mmol) were added subsequently. The reaction mixture was stirred at 80 °C for 18 h. The product was purified by column chromatography on silica gel. 2-(4-Fluorophenyl)-1-tosyl-5-vinylpyrrolidine-3,3-dicarbonitrile (3) The product was obtained following the general procedure using vinylcyclopropane 1 (0.4 mmol, 1 equiv) and the corresponding imine (0.5 mmol, 1.25 equiv.) after column chromatography (PE–EtOAc, 5:1) as a brown solid (0.38 mmol, 95%). Diastereomers (dr = 1.12:1) were separated via semipreparative HPLC (PE–EtOAc, 6:1). Diastereomer 1: 1H NMR (300 MHz, CDCl3): δ = 7.61–7.56 (m, 2 H), 7.41–7.33 (m, 2 H), 7.30 (d, J = 8.0 Hz, 2 H), 7.13–7.05 (m, 2 H), 6.12 (m, 1 H), 5.45 (dd, J = 18.3, 13.6 Hz, 2 H), 5.33 (s, 1 H), 4.57 (q, J = 7.2 Hz, 1 H), 2.69 (dd, J = 13.3, 7.0 Hz, 1 H), 2.54 (dd, J = 13.3, 8.0 Hz, 1 H), 2.44 (s, 3 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 165.2, 161.9, 145.0, 135.2, 133.8, 130.3 (d, J = 3.2 Hz), 129.9, 129.5 (d, J = 8.7 Hz), 127.9, 119.9, 116.2, 115.9, 113.4, 111.8, 70.2, 61.5, 40.3, 21.6 ppm. IR (film): ν = 2924 (w), 1605 (w), 1510 (m), 1359 (m), 1227 (m), 1165 (s), 1091 (m) cm–1. GC–MS (ESI): m/z (%) = 418 (100) [M+ + Na]. ESI-HRMS: m/z calcd for C21H18FN3O2S + Na+: 418.0996; found: 418.0986. Diastereomer 2: 1H NMR (300 MHz, CDCl3): δ = 7.61–7.53 (m, 2 H), 7.27 (m, 4 H), 7.10 (m, 2 H), 5.83 (dt, J = 16.8, 9.7 Hz, 1 H), 5.62 (s, 1 H), 5.38 (d, J = 16.8 Hz, 1 H), 5.16 (d, J = 10.0 Hz, 1 H), 4.82 (m, 1 H), 3.02–2.91 (m, 1 H), 2.60 (m, 1 H), 2.42 (s, 3 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 165.1, 161.8, 144.4, 137.2, 135.3, 130.7 (d, J = 3.4 Hz), 129.5, 129.1 (d, J = 8.7 Hz), 127.7, 120.2, 116.3, 116.1, 115.1, 111.8, 71.0, 62.0, 40.8, 21.6 ppm. IR (film): ν = 2924 (w), 1604 (w), 1511 (m), 1351 (m), 1228 (m), 1158 (s), 1106 (m) cm–1. GC–MS (ESI): m/z (%) = 418 (100) [M+ + Na]. ESI-HRMS: m/z calcd for C21H18FN3O2S + Na+: 418.0996; found: 418.1004.
- 14a Makara GM, Ma Y. Tetrahedron Lett. 2001; 42: 4123
- 14b Reddick JJ, Cheng J, Roush WR. Org. Lett. 2003; 5: 1967
- 14c Li H, Song J, Liu X, Deng L. J. Am. Chem. Soc. 2005; 127: 8948
- 14d Rogachev VO, Metz P. Nat. Protoc. 2006; 1: 3076
- 14e Chudasama V, Wilden JD. Chem. Commun. 2008; 3768
- 14f Zhou A, Rayabarapu D, Hanson PR. Org. Lett. 2009; 11: 531
- 14g Shi B, Merten S, Wong DK. Y, Chu JC. K, Liu LL, Lam SK, Jäger A, Wong W.-T, Chiu P, Metz P. Adv. Synth. Catal. 2009; 351: 3128
- 14h Tong K, Tu J, Qi X, Wang M, Wang Y, Fu H, Pittman CU, Zhou A. Tetrahedron 2013; 69: 2369
For selected reviews see:
For selected reviews see:
For various other TBA[Fe]-catalyzed reactions, see:
For selected examples see: