Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2015; 26(03): 340-344
DOI: 10.1055/s-0034-1379247
DOI: 10.1055/s-0034-1379247
cluster
Cobalt-Catalyzed Directed Alkylation of Olefinic C–H Bond with Primary and Secondary Alkyl Chlorides
Further Information
Publication History
Received: 28 August 2014
Accepted: 15 September 2014
Publication Date:
15 October 2014 (online)
Abstract
A cobalt–N-heterocyclic carbene catalytic system promotes pyridine-directed olefinic C–H alkylation reactions using a variety of primary and secondary alkyl chlorides under mild conditions. Radical clock experiments suggest that the reaction involves single-electron transfer from the cobalt intermediate to the alkyl chloride.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/products/ejournals/journal/ 10.1055/s-00000083.
- Supporting Information
-
References and Notes
- 1 Ackermann L. Chem. Commun. 2010; 46: 4866
- 2a Kakiuchi F, Kochi T. Synthesis 2008; 3013
- 2b Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
- 2c Ackermann L. Chem. Rev. 2011; 111: 1315
- 2d Arockiam PB, Bruneau C, Dixneuf PH. Chem. Rev. 2012; 112: 5879
- 3 Ackermann L, Novák P, Vicente R, Hofmann N. Angew. Chem. Int. Ed. 2009; 48: 6045
- 4a Zhang Y.-H, Shi B.-F, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 6097
- 4b Shabashov D, Daugulis O. J. Am. Chem. Soc. 2010; 132: 3965
- 4c Zhao Y.-S, Chen G. Org. Lett. 2011; 13: 4850
- 5a Aihara Y, Chatani N. J. Am. Chem. Soc. 2013; 135: 5308
- 5b Song W, Lackner S, Ackermann L. Angew. Chem. Int. Ed. 2014; 53: 2477
- 6a Gao K, Yoshikai N. J. Am. Chem. Soc. 2013; 135: 9279
- 6b Punji B, Song WF, Shevchenko GA, Ackermann L. Chem. Eur. J. 2013; 19: 10605
- 6c Gao K, Yamakawa T, Yoshikai N. Synthesis 2014; 46: 2024
- 7a Ilies L, Matsubara T, Ichikawa S, Asako S, Nakamura E. J. Am. Chem. Soc. 2014; 136: 13126
- 7b Fruchey ER, Monks BM, Cook SP. J. Am. Chem. Soc. 2014; 136: 13130
- 7c Monks BM, Fruchey ER, Cook SP. Angew. Chem. Int. Ed. 2014; 53: 11065
- 8 Gao K, Yoshikai N. Acc. Chem. Res. 2014; 47: 1208
- 9 For an example of cobalt-catalyzed olefinic C–H functionalization, see: Yamakawa T, Yoshikai N. Org. Lett. 2013; 15: 196
- 10a Oi S, Sakai K, Inoue Y. Org. Lett. 2005; 7: 4009
- 10b Ackermann L, Born R, Alvarez-Bercedo P. Angew. Chem. Int. Ed. 2007; 46: 6364
- 10c Kuninobu Y, Fujii Y, Matsuki T, Nishina Y, Takai K. Org. Lett. 2009; 11: 2711
- 10d Ilies L, Asako S, Nakamura E. J. Am. Chem. Soc. 2011; 133: 7672
- 10e Li Y, Zhang X.-S, Zhu Q.-L, Shi Z.-J. Org. Lett. 2012; 14: 4498
- 11a Li B, Wu Z.-H, Gu Y.-F, Sun C.-L, Wang B.-Q, Shi Z.-J. Angew. Chem. Int. Ed. 2011; 50: 1109
- 11b Yamakawa T, Yoshikai N. Chem. Asian J. 2014; 9: 1242
- 12 Klein H.-F, Camadanli S, Beck R, Leukel D, Flörke U. Angew. Chem. Int. Ed. 2005; 44: 975
- 13 Wakabayashi K, Yorimitsu H, Oshima K. J. Am. Chem. Soc. 2001; 123: 5374
- 14a Ohmiya H, Wakabayashi K, Yorimitsu H, Oshima K. Tetrahedron 2006; 62: 2207
- 14b Ohmiya H, Yorimitsu H, Oshima K. J. Am. Chem. Soc. 2006; 128: 1886
- 14c Cahiez G, Chaboche C, Duplais C, Moyeux A. Org. Lett. 2009; 11: 277
- 15a Cahiez G, Moyeux A. Chem. Rev. 2010; 110: 1435
- 15b Hess W, Treutwein J, Hilt G. Synthesis 2008; 3537
- 15c Gosmini C, Begouin JM, Moncomble A. Chem. Commun. 2008; 3221
- 15d Yorimitsu H, Oshima K. Pure Appl. Chem. 2006; 78: 441
- 16 General Procedure for 2-{[1,1′-Bi(cyclohexan)]-1-en-2-yl}pyridine (3aa): In a 10-mL Schlenk tube were placed CoBr2 (0.3 M in THF, 0.10 mL, 0.030 mmol), 1,3-diisopropylbenzimidazolium bromide (L2; 8.5 mg, 0.030 mmol), 2-(cyclohex-1-en-1-yl)pyridine (1a; 47.8 mg, 0.30 mmol), chlorocyclohexane (2a; 53.6 μL, 0.45 mmol), TMEDA (90 μL, 0.60 mmol) and THF (0.28 mL). To the mixture was added a THF solution of t-BuCH2MgBr (0.96 M, 0.63 mL, 0.60 mmol) dropwise at 0 °C. The reaction mixture was stirred at r.t. for 6 h, and then quenched by the addition H2O (1.0 mL). The resulting mixture was extracted with EtOAc (3 × 3 mL). The combined organic layer was dried over Na2SO4 and concentrated under reduced pressure. The crude product was purified by silica gel chromatography (eluent: hexane–EtOAc, 100:12) to afford a mixture of 3aa and 2-(2-neopentylcyclohex-1-en-1-yl)pyridine in a ratio of 30:1 (determined by 1H NMR) as a yellow solid (69.2 mg, 92% yield for 3aa). 1H NMR (400 MHz, CDCl3): δ = 1.00–1.09 (m, 3 H), 1.27–1.37 (m, 2 H), 1.48–1.55 (m, 3 H), 1.62–1.74 (m, 6 H), 2.05–2.12 (m, 3 H), 2.30–2.33 (m, 2 H), 7.09–7.11 (m, 2 H), 7.58–7.63 (m, 1 H), 8.56–8.60 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 23.2, 23.3, 24.5, 26.3, 26.6 (2 × C), 31.0, 31.2 (2 × C), 42.1, 121.0, 123.4, 131.2, 136.0, 140.0, 149.5, 162.9. HRMS (ESI): m/z [M + H]+ calcd for C17H24N: 242.1909; found: 242.1908.
For selected reviews, see:
For examples of other types of olefinic C–H functionalization of 2-alkenylpyridines, see:
For reviews on cobalt-catalyzed cross-coupling reactions, see: