Synlett 2015; 26(16): 2253-2256
DOI: 10.1055/s-0035-1560050
letter
© Georg Thieme Verlag Stuttgart · New York

The Ugi Reaction of Cyanoacetic Acid as a Route to Tetramic Acid Derivatives

Nancy V. Alvarez-Rodríguez
b   Noria Alta S/N, Departamento de Química, Universidad de Guanajuato, Noria Alta S/N, CP 36050 Guanajuato,Gto., México   Email: rociogm@ugto.mx
,
Aurélie Dos Santos
a   Laboratoire DCSO ENSTA-Polytechnique-CNRS, UMR 7652, Ecole Nationale Supérieure de Techniques Avancées, 828 Bd des Maréchaux, Palaiseau, France   Email: laurent.elkaim@ensta.fr
,
Laurent El Kaïm*
a   Laboratoire DCSO ENSTA-Polytechnique-CNRS, UMR 7652, Ecole Nationale Supérieure de Techniques Avancées, 828 Bd des Maréchaux, Palaiseau, France   Email: laurent.elkaim@ensta.fr
,
Rocío Gámez-Montaño*
b   Noria Alta S/N, Departamento de Química, Universidad de Guanajuato, Noria Alta S/N, CP 36050 Guanajuato,Gto., México   Email: rociogm@ugto.mx
› Author Affiliations
Further Information

Publication History

Received: 29 April 2015

Accepted after revision: 29 June 2015

Publication Date:
12 August 2015 (online)


Abstract

Ugi adducts of cyanoacetic acid and aromatic aldehydes are readily cyclized under basic conditions leading to one-pot formation of aminopyrrolinone derivatives.

Supporting Information

 
  • References and Notes

  • 2 Marcaccini S, Torroba T. Post-condensation Modifications of the Passerini and Ugi Reactions . In Multicomponent Reactions . Zhu J, Bienaymé H. Wiley-VCH; Weinheim: 2005. Chap. 2, 33-72
  • 3 Bossio R, Marcaccini S, Pepino R. Synthesis 1994; 765
  • 5 Neo AG, Carillo RM, Barriga S, Moman E, Marcaccini S, Marcos CF. Synlett 2007; 327
  • 6 Marcos CF, Marcaccini S, Pepino R, Polo C, Torroba T. Synthesis 2003; 691
  • 8 Typical Procedure for 2a To a stirred solution of 3-nitrobenzaldehyde (305 mg, 2 mmol) in anhydrous MeOH (0.5 M) under argon at r.t. was added aniline (187 mg, 2 mmol). After 5 min, cyclohexylisocyanide (222 mg, 2 mmol) and cyanoacetic acid (171 mg, 2 mmol) were sequentially added. The resulting mixture was stirred at r.t. for 4 h. Subsequently, anhydrous MeOH was added to obtain a 0.2 M solution and K2CO3 (0.2 equiv) was added. The resulting mixture was stirred and heated at 65 °C for 1 h. Evaporation of the solvent under reduced pressure, addition of CH2Cl2 and extraction afforded the crude product that was purified by silica gel column chromatography (PE–Et2O, 2:8). Compound 2a was obtained as a white solid (mp 231–233 °C) in 74% isolated yield (620 mg, 1.48 mmol); Rf  = 0.17 (PE–Et2O, 2:8). 1H NMR (400 MHz, DMSO): δ = 8.31 (t, J = 2.0 Hz, 1 H, ArH), 8.18 (d, J = 8.5 Hz, 1 H, NH), 8.10 (ddd, J = 0.9, 2.3, 8.2 Hz, 1 H, ArH), 7.70–7.68 (m, 1 H, ArH), 7.56–7.52 (m, 1 H, ArH), 7.13–7.12 (m, 4 H, ArH), 6.96–6.92 (m, 1 H, ArH), 6.60 (s, 2 H, NH2), 4.87 (s, 1 H, CH), 3.76–3.67 (m, 1 H, CH), 1.66–1.65 (m, 3 H, CyH), 1.57–1.55 (m, 2 H, CyH), 1.35–1.17 (m, 4 H, CyH), 1.04–0.97 (m, 1 H, CyH) ppm. 13C NMR (100 MHz, DMSO): δ = 172.8 (CO), 165.9 (CO), 164.5 (CNH2), 147.2 (ArC), 139.2 (ArC), 137.8 (ArC), 135.1 (ArC), 129.5 (ArC), 128.2 (ArC), 124.1 (ArC), 123.8 (ArC), 123.5 (ArC), 122.9 (ArC), 88.3 (CH), 75.0 (Cquat), 48.9 (CH), 31.7 (CyC), 25.1 (CyC), 25.0 (CyC), 25.0 (CyC) ppm. FTIR: ν = 1693 (CO), 1673 (CO), 1617 (NH2), 1529 (NO2), 1348 (NO2) cm–1. HRMS (ESI+/TOF): m/z calcd for C23H25N4O4 +: 421.1870; found: 421.1886.
    • 11a Daniel Bellus D, Fory W. US 4013445, 1977
    • 11b Nobuyuki O, Toshihiro N, Akira T, Shigehiko T, Yasunori O. US 5312929, 1994
  • 12 Baasner B, Fischer R, Widdig A, Lürssen K, Santel H.-J, Schmidt RR. US 5338560, 1994
  • 13 Matsuo K, Tanaka K. Yakugaku Zasshi 1984; 104: 1004
  • 14 Arnold T, Unverferth K, Lankau H.-J, Rostock A, Tober C, Rundfeldt C, Bartsch R. US 6500821, 2002