Subscribe to RSS
DOI: 10.1055/s-0035-1561639
Catalytic Selective Deoxygenation of Polyols Using the B(C6F5)3/Silane System
Publication History
Received: 30 March 2016
Accepted after revision: 13 April 2016
Publication Date:
08 June 2016 (online)
Dedicated to Prof. Erick M. Carreira
Abstract
The selective deoxygenation of polyols is an important frontier in our ability to transform biomass-derived compounds and other synthetic intermediates. In this Synpacts article, recent approaches using a B(C6F5)3/silane combination to site-selectively deoxygenate polyols are highlighted. First, the work of Gagné and coworkers is discussed. They developed a partial, selective deoxygenation of biologically sourced polyols proceeding through an elegant example of anchimeric assistance. In the second part, we present our recent work describing a catalytic deoxygenation of terminal diols with selectivity for the cleavage of the primary hydroxyl group. This transformation was enabled by the strategic formation of a cyclic siloxane intermediate.
1 Introduction
2 Background
3 Selective Deoxygenation of Carbohydrates
4 Selective Deoxygenation of Terminal Diols at the Primary Position
5 Conclusion
-
References
- 1a Corma A, Iborra S, Velty A. Chem. Rev. 2007; 107: 2411
- 1b Luterbacher JS, Alonso DM, Dumesic JA. Green. Chem. 2014; 16: 4816
- 1c Tuck CO, Pérez E, Horváth IT, Sheldon RA, Poliakoff M. Science 2012; 337: 695
- 1d Gallezot P. Chem. Soc. Rev. 2012; 41: 1538
- 1e Chheda JN, Huber GW, Dumesic JA. Angew. Chem. Int. Ed. 2007; 46: 7164
- 1f Arceo E, Marsden P, Bergman RG, Ellman JA. Chem. Commun. 2009; 3357
- 2a Ruppert AM, Weinberg K, Palkovits R. Angew. Chem. Int. Ed. 2012; 51: 2564
- 2b Geilen FM. A, Engendahl B, Harwardt A, Marquardt W, Klankermayer J, Leitner W. Angew. Chem. Int. Ed. 2010; 49: 5510
- 2c Sergeev AG, Hartwig JF. Science 2011; 332: 439
- 2d Nichols JM, Bishop LM, Bergman RG, Ellman JA. J. Am. Chem. Soc. 2010; 132: 12554
- 2e Yang J, White PS, Brookhart M. J. Am. Chem. Soc. 2008; 130: 17509
- 2f Berkefeld A, Piers WE, Parvez M. J. Am. Chem. Soc. 2010; 132: 10660
- 3a Shiramizu M, Toste FD. Angew. Chem. Int. Ed. 2012; 51: 8082
- 3b Shiramizu M, Toste FD. Angew. Chem. Int. Ed. 2013; 52: 12905
- 3c Arceo E, Ellman JA, Bergman RG. J. Am. Chem. Soc. 2010; 132: 11408
- 3d Ziegler JE, Zdilla MJ, Evans AJ, Abu-Omar MM. Inorg. Chem. 2009; 48: 9998
- 3e Chapman GJr, Nicholas KM. Chem. Commun. 2013; 49: 8199
- 3f Mascal M, Nikitin EB. Angew. Chem. Int. Ed. 2008; 47: 7924
- 4a Adduci LL, McLaughlin MP, Bender TA, Gagné MR. Angew. Chem. Int. Ed. 2014; 53: 1646
- 4b McLaughlin MP, Adduci L, Becker JJ, Gagné MR. J. Am. Chem. Soc. 2013; 135: 1225
- 4c Robert T, Oestreich M. Angew. Chem. Int. Ed. 2013; 52: 5216
- 5a Ahmed Foskey TJ, Heinekey DM, Goldberg KI. ACS Catal. 2012; 2: 1285
- 5b Schlaf M, Ghosh P, Fagan PJ, Hauptman E, Bullock RM. Adv. Synth. Catal. 2009; 351: 789
- 5c Schlaf M, Ghosh P, Fagan PJ, Hauptman E, Bullock RM. Angew. Chem. Int. Ed. 2001; 40: 3887
- 6 Catalytic cleavage of 1,2-diols at the primary position: Drosos N, Morandi B. Angew. Chem. Int. Ed. 2015; 54: 8814
- 7a Adduci LL, Bender TA, Dabrowski JA, Gagné MR. Nat. Chem. 2015; 7: 576
- 7b McNally A. Nat. Chem. 2015; 7: 539
- 8a Beller M, Seayad J, Tillack A, Jiao H. Angew. Chem. Int. Ed. 2004; 43: 3368
- 8b Mahatthananchai J, Dumas AM, Bode JW. Angew. Chem. Int. Ed. 2002; 51: 10954
- 9a Gevorgyan V, Liu J.-X, Rubin M, Benson S, Yamamoto Y. Tetrahedron Lett. 1999; 40: 8919
- 9b Gevorgyan V, Rubin M, Benson S, Liu J.-X, Yamamoto Y. J. Org. Chem. 2000; 65: 6179
- 9c Parks DJ, Blackwell JM, Piers WE. J. Org. Chem. 2000; 65: 3090
- 9d Nimmagadda RD, McRae C. Tetrahedron Lett. 2006; 47: 5755
- 9e Feghali E, Cantat T. Chem. Commun. 2014; 50: 862
- 9f Oestreich M, Hermke J, Mohr J. Chem. Soc. Rev. 2015; 44: 2202
- 9g Parks DJ, Piers WE. J. Am. Chem. Soc. 1996; 118: 9440
- 9h Blackwell JM, Foster KL, Beck VH, Piers WE. J. Org. Chem. 1999; 64: 4887
- 10a Houghton AY, Hurmalainen J, Mansikkamäki A, Piers WE, Tuononen HM. Nat. Chem. 2014; 6: 983
- 10b Rendler S, Oestreich M. Angew. Chem. Int. Ed. 2008; 47: 5997
- 11a Schaus SE, Brandes BD, Larrow JF, Tokunaga M, Hansen KB, Gould AE, Furrow ME, Jacobsen EN. J. Am. Chem. Soc. 2002; 124: 1307
- 11b Tokunaga M, Larrow JF, Kakiuchi F, Jacobsen EN. Science 1997; 277 936
- 11c Kolb HC, Van Nieuwenhze MS, Sharpless KB. Chem. Rev. 1994; 94: 2483
- 11d Kim JH, Coric I, Palumbo C, List B. J. Am. Chem. Soc. 2015; 137: 1778
- 12 Cyclic siloxanes form upon treatment of diols with catalytic amounts of B(C6F5)3 and Ph2SiH2, see ref. 9h.
- 13a Yang X.-H, Wang K, Zhu S.-F, Xie J.-H, Zhou Q.-L. J. Am. Chem. Soc. 2014; 136: 17426
- 13b Cui P, Macdonald TL, Chen M, Nadler JL. Bioorg. Med. Chem. Lett. 2006; 16: 3401
- 14a Jordan PA, Miller SJ. Angew. Chem. Int. Ed. 2012; 51: 2907
- 14b Sanchez-Rosellý M, Puchlopek AL. A, Morgan AJ, Miller SJ. J. Org. Chem. 2008; 73 1774
- 14c Gouliaras C, Lee D, Chan LN, Taylor MS. J. Am. Chem. Soc. 2011; 133: 13926
- 14d Sun X, Lee H, Lee S, Tian KL. Nat. Chem. 2013; 5: 790
- 14e Worthy AD, Sun X, Tan KL. J. Am. Chem. Soc. 2012; 134: 7321
Selective cleavage of diols at the secondary position:
Catalytic selective partial deoxygenation of biologically sourced polyols:
Selected references about selective catalysis:
For selected key references about site-selective polyol transformations, see: