Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2017; 28(09): 1091-1095
DOI: 10.1055/s-0036-1588703
DOI: 10.1055/s-0036-1588703
letter
[3+2] Annulation of Donor–Acceptor Cyclopropanes with Vinyl Azides
Further Information
Publication History
Received: 30 November 2016
Accepted after revision: 15 January 2017
Publication Date:
06 February 2017 (online)
Abstract
A Sc(OTf)3-catalyzed reaction of vinyl azides with donor–acceptor cyclopropanes affords highly functionalized azidocyclopentanes in a diastereoselective fashion. The resulting azidocyclopentanes could be transformed into various cyclic scaffolds.
Key words
vinyl azides - donor–acceptor cyclopropanes - cyclopentanes - [3+2] annulation - Lewis acidsSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0036-1588703.
- Supporting Information
-
References and Notes
- 1a Hu B, DiMagno SG. Org. Biomol. Chem. 2015; 13: 3844-3844
- 1b Jung N, Bräse S. Angew. Chem. Int. Ed. 2012; 51: 12169-12169
- 1c Chiba S. Chimia 2012; 66: 377-377
- 1d Chiba S. Synlett 2012; 23: 21-21
- 1e Banert K. In Organic Azides: Syntheses and Applications . Bräse S, Banert K. Wiley; Chichester: 2010: 115
- 1f Stokes BJ, Driver TG. Eur. J. Org. Chem. 2011; 4071-4071
- 1g Driver TG. Org. Biomol. Chem. 2010; 8: 3831-3831
- 2a Wang Y.-F, Hu M, Hayashi H, Xing B, Chiba S. Org. Lett. 2016; 18: 992-992
- 2b Zhu X, Chiba S. Chem. Commun. 2016; 52: 2473-2473
- 2c Zhang F.-L, Zhu X, Chiba S. Org. Lett. 2015; 17: 3138-3138
- 2d Zhu X, Wang Y.-F, Zhang F.-L, Chiba S. Chem. Asian J. 2014; 9: 2458-2458
- 2e Zhang F.-L, Wang Y.-F, Lonca GH, Zhu X, Chiba S. Angew. Chem. Int. Ed. 2014; 53: 4390-4390
- 2f Wu S.-W, Liu F. Org. Lett. 2016; 18: 3642-3642
- 2g Zhang Z, Kumar RK, Li G, Wu G, Bi X. Org. Lett. 2015; 17: 6190-6190
- 3a Hassner A, Ferdinandi ES, Isbister RJ. J. Am. Chem. Soc. 1970; 92: 1672-1672
- 3b Moore HW, Shelden HR, Weyler WJr. Tetrahedron Lett. 1969; 10: 1243-1243
- 4a The Chemistry of Enamines . Rappoport Z. Wiley; New York: 1994
- 4b Stork G, Brizzolara A, Landesman H, Szmuszkovicz J, Terrell R. J. Am. Chem. Soc. 1963; 85: 207-207
- 5a Wrobleski A, Coombs TC, Huh CW, Li S.-W, Aubé J. Org. React. 2012; 78: 1-1
- 5b Grecian S, Aubé J. In Organic Azides: Syntheses and Applications . Bräse S, Banert K. Wiley; Chichester: 2010: 191
- 5c Lang S, Murphy JA. Chem. Soc. Rev. 2006; 35: 146-146
- 5d Bräse S, Gil C, Knepper K, Zimmermann V. Angew. Chem. Int. Ed. 2005; 44: 5188-5188
- 6a Grover HK, Emmett MR, Kerr MA. Org. Biomol. Chem. 2015; 13: 655-655
- 6b Novikov RA, Tomilov YV. Mendeleev Commun. 2015; 25: 1-1
- 6c Schneider TF, Kaschel J, Werz DB. Angew. Chem. Int. Ed. 2014; 53: 5504-5504
- 6d Liao S, Sun XL, Tang Y. Acc. Chem. Res. 2014; 47: 2260-2260
- 6e de Nanteuil F, De Simone F, Frei R, Benfatti F, Serrano E, Waser J. Chem. Commun. 2014; 50: 10912-10912
- 6f Cavitt MA, Phun LH, France S. Chem. Soc. Rev. 2014; 43: 804-804
- 7 Kerr recently demonstrated a distinct mode of annulation between donor–acceptor cyclopropanes and vinyl azides in the presence of Dy(OTf)3 as a catalyst in toluene at 110 °C, affording 1-azabicyclo[3.1.0]hexane scaffolds, see: Tejeda JE. C, Irwin LC, Kerr MA. Org. Lett. 2016; 18: 4738-4738
- 8a Borisov DD, Novikov RA, Tomilov YV. Angew. Chem. Int. Ed. 2016; 55: 12233-12233
- 8b Racine S, Hegedìs B, Scopelliti R, Waser J. Chem. Eur. J. 2016; 22: 11997-11997
- 8c Kaicharla T, Roy T, Thangaraj M, Gonnade RG, Biju AT. Angew. Chem. Int. Ed. 2016; 55: 10061-10061
- 8d Verma K, Banerjee P. Adv. Synth. Catal. 2016; 358: 2053-2053
- 8e Budynina EM, Ivanova OA, Chagarovskiy AO, Grishin YK, Trushkov IV, Melnikov MY. J. Org. Chem. 2015; 80: 12212-12212
- 8f Rakhmankulov ER, Ivanov KL, Budynina EM, Ivanova OA, Chagarovskiy AO, Skvortsov DA, Latyshev GV, Trushkov IV, Melnikov MY. Org. Lett. 2015; 17: 770-770
- 8g Cheng Q.-Q, Qian Y, Zavalij PY, Doyle MP. Org. Lett. 2015; 17: 3568-3568
- 8h Serrano E, de Nanteuil F, Waser J. Synlett 2014; 25: 2285-2285
- 8i Tombe R, Iwamoto T, Kurahashi T, Matsubara S. Synlett 2014; 25: 2281-2281
- 8j Mackay WD, Fistikci M, Carris RM, Johnson JS. Org. Lett. 2014; 16: 1626-1626
- 8k de Nanteuil F, Serrano E, Perrotta D, Waser J. J. Am. Chem. Soc. 2014; 136: 6239-6239
- 8l Racine S, de Nanteuil F, Serrano E, Waser J. Angew. Chem. Int. Ed. 2014; 53: 8484-8484
- 8m Xu H, Qu J.-P, Liao S, Xiong H, Tang Y. Angew. Chem. Int. Ed. 2013; 52: 4004-4004
- 8n Qu J.-P, Liang Y, Xu H, Sun X.-L, Yu Z.-X, Tang Y. Chem. Eur. J. 2012; 18: 2196-2196
- 8o de Nanteuil F, Waser J. Angew. Chem. Int. Ed. 2011; 50: 12075-12075
- 9a Ghosh A, Mandal S, Chattaraj PK, Banerjee P. Org. Lett. 2016; 18: 4940-4940
- 9b Varshnaya RK, Banerjee P. Eur. J. Org. Chem. 2016; 4059-4059
- 9c Chidley T, Vemula N, Carson CA, Kerr MA, Pagenkopf BL. Org. Lett. 2016; 18: 2922-2922
- 9d Alajarin M, Egea A, Orenes R.-A, Vidal A. Org. Biomol. Chem. 2016; 14: 10275-10275
- 9e Das S, Chakrabarty S, Daniliuc CG, Studer A. Org. Lett. 2016; 18: 2784-2784
- 9f Ivanova OA, Budynina EM, Khrustalev VN, Skvortsov DA, Trushkov IV, Melnikov MY. Chem. Eur. J. 2016; 22: 1223-1223
- 9g Sabbatani J, Maulide N. Angew. Chem. Int. Ed. 2016; 55: 6780-6780
- 9h Garve LK. B, Petzold M, Jones PG, Werz DB. Org. Lett. 2016; 18: 564-564
- 9i Liu J, Ye W, Qing X, Wang C. J. Org. Chem. 2016; 81: 7970-7970
- 9j Garve LK. B, Pawliczek M, Wallbaum J, Jones PG, Werz DB. Chem. Eur. J. 2016; 22: 521-521
- 9k Xu H, Hu J.-L, Wang L, Liao S, Tang Y. J. Am. Chem. Soc. 2015; 137: 8006-8006
- 9l Tabolin AA, Novikov RA, Khomutova YA, Zharov AA, Stashina GA, Nelyubina YV, Tomilov YV, Ioffe SL. Tetrahedron Lett. 2015; 56: 2102-2102
- 9m Ghosh A, Pandey AK, Banerjee P. J. Org. Chem. 2015; 80: 7235-7235
- 9n Liu H, Yuan C, Wu Y, Xiao Y, Guo H. Org. Lett. 2015; 17: 4220-4220
- 9o Zhang J, Xing S, Ren J, Jiang S, Wang Z. Org. Lett. 2015; 17: 218-218
- 9p Wang H.-P, Zhang H.-H, Hu X.-Q, Xu P.-F, Luo Y.-C. Eur. J. Org. Chem. 2015; 3486-3486
- 9q Pandey AK, Ghosh A, Banerjee P. Eur. J. Org. Chem. 2015; 2517-2517
- 9r Zhang H.-H, Luo Y.-C, Wang H.-P, Chen W, Xu P.-F. Org. Lett. 2014; 16: 4896-4896
- 9s Talukdar R, Tiwari DP, Saha A, Ghorai MK. Org. Lett. 2014; 16: 3954-3954
- 9t Sathishkannan G, Srinivasan K. Chem. Commun. 2014; 50: 4062-4062
- 9u Chakrabarty S, Chatterjee I, Wibbeling B, Daniliuc CG, Studer A. Angew. Chem. Int. Ed. 2014; 53: 5964-5964
- 9v Novikov RA, Tarasova AV, Korolev VA, Timofeev VP, Tomilov YV. Angew. Chem. Int. Ed. 2014; 53: 3187-3187
- 10 During the revision of this manuscript, conceptually the same work on Lewis acid catalyzed [3+2] annulation of donor–acceptor cyclopropanes and vinyl azides was reported by Banerjee, see: Dey R, Banerjee P. Org. Lett. 2017; 19: 304-304
- 11a Pohlhaus PD, Sanders SD, Parsons AT, Li W, Johnson JS. J. Am. Chem. Soc. 2008; 130: 8642-8642
- 11b Pohlhaus PD, Johnson JS. J. Am. Chem. Soc. 2005; 127: 16014-16014
- 12 See the Supporting Information.
- 13 The stereochemistry of the major isomer of 6aa (CCDC 1519381), 7aa (CCDC 1519383), 9aa (CCDC 1519478), and 9ca (CCDC 1519384) were secured by X-ray crystallographic analysis. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 14 Krapcho AP, Ciganek E. Org. React. 2013; 81: 1-1
- 15 For a relevant report on TfOH-mediated elimination of an azido ion followed by SN1 type elimination, see: Wrobleski A, Aubé J. J. Org. Chem. 2001; 66: 886-886
- 16a Hanessian S, Vatiki RR, Chattopadhyay AK, Dorich S, Lavallée C. Bioorg. Med. Chem. 2013; 21: 1775-1775
- 16b Clercq ED. Nat. Rev. Drug Discovery 2006; 5: 1015-1015
- 16c Stoll V, Stewart KD, Maring CJ, Muchmore S, Giranda V, Gu YG, Wang G, Chen Y, Sun M, Zhao C, Kennedy AL, Madigan DL, Xu Y, Saldivar A, Kati W, Laver G, Sowin T, Sham HL, Greer J, Kempf D. Biochemistry 2003; 42: 718-718
- 16d Fülöp F. Chem. Rev. 2001; 101: 2181-2181
- 16e Brodersen DE, Clemons WM. Jr, Carter AP, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V. Cell 2000; 103: 1143-1143
- 17 Procedure for the Synthesis of Cyclopentane 9aa To a stirred solution of cyclopropane 5a (218 mg, 0.493 mmol) and vinyl azide 1a (144 mg, 0.993 mmol) in CH2Cl2 (0.8 mL) and MeNO2 (0.2 mL) was added Sc(OTf)3 (37.6 mg, 0.0764 mmol) at 0 °C under an Ar atmosphere. The solution was stirred at 0 °C for 24 h and then quenched with sat. aq NaHCO3. The mixture was extracted with CH2Cl2, and the combined extracts were washed with brine, dried over MgSO4, and concentrated in vacuo. The resulting crude material was purified by flash column chromatography (hexane–Et2O, 100:1 to 90:1) to yield cyclopentane 9aa (275 mg, 0.468 mmol) in 95% yield as a mixture of diastereomer (major/minor = 88:12, which was determined by 1H NMR analysis). The major isomer could be recrystallized from CH2Cl2–hexane as a colorless crystal. Bis(2,6-dimethylbenzyl) (2S*,4R*)-2-azido-2,4-diphenylcyclopentane-1,1-dicarboxylate (9aa major) Mp 100–101 °C. 1H NMR (400 MHz, CDCl3): δ = 2.04 (6 H, s), 2.16 (6 H, s), 2.52 (1 H, dd, J = 6.8, 14.4 Hz), 2.79–2.91 (2 H, m), 3.03 (1 H, dd, J = 10.4, 14.4 Hz), 3.57–3.66 (1 H, m), 4.94 (1 H, d, J = 12.0 Hz), 5.08–5.14 (2 H, m), 5.29 (1 H, d, J = 12.0 Hz), 6.93 (2 H, d, J = 7.6 Hz), 6.99 (2 H, d, J = 7.6 Hz), 7.07–7.22 (6 H, m), 7.27–7.31 (4 H, m), 7.37 (2 H, d, J = 7.2 Hz). 13C NMR (100 MHz, CDCl3): δ = 19.2, 19.3, 39.9, 43.2, 47.3, 62.2, 62.4, 69.8, 78.3, 126.4, 127.3, 127.4, 127.9, 128.09, 128.12 (overlapped), 128.2, 128.7, 128.8, 130.7, 131.1, 138.2, 138.4, 138.5, 144.4, 169.4, 170.1. ESI-HRMS: m/z calcd for C37H38NO4 [M – N2 + H]+: 560.2801; found: 560.2806.
For reviews, see:
Also see:
Hassner and Moore reported that protonation of vinyl azides by aqueous acids generates iminodiazonium ion intermediates that further undergo the Schmidt-type substituent-1,2-migration to form nitrilium ions with elimination of dinitrogen (N2), see:
For reviews on donor–acceptor cyclopropanes, see:
For selected reports on [3+2] annulation of donor–acceptor cyclopropanes for synthesis of functionalized cyclopentanes and cyclopentenes, see:
For recent reports on other types of annulation reactions with donor–acceptor cyclopropanes, see:
The reactions of vinyl azide 1a with optically active cyclopropane (S)-2a (99% ee) gave [3+2]-annulation products in up to 93% ee, suggesting that the first C–C bond-forming process between 1a and 2a takes place predominantly in an SN2-type manner (See the Supporting Information for the details). For relevant reports, see:
The aminocyclopentane motif is widely utilized in medicinal applications, see: