Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2017; 28(13): 1576-1580
DOI: 10.1055/s-0036-1588969
DOI: 10.1055/s-0036-1588969
cluster
Ligand-Free, Copper-Catalyzed Aerobic Benzylic sp3 C–H Oxygenation
Further Information
Publication History
Received: 16 January 2017
Accepted after revision: 16 February 2017
Publication Date:
08 March 2017 (online)
Abstract
A ligand-free and operationally simple copper-catalyzed aerobic benzylic sp3 C–H oxygenation was developed. The addition of tert-butyl hydroperoxide, either in a catalytic or stoichiometric amount, was key for activating stable C–H bonds under mild conditions to furnish the corresponding ketones or esters in moderate to excellent yield.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0036-1588969.
- Supporting Information
-
References and Notes
- 1a Yang L. Huang H. Chem. Rev. 2015; 115: 3468
- 1b Wencel-Delord J. Dröge T. Liu F. Glorius F. Chem. Soc. Rev. 2011; 40: 4740
- 1c Liu C. Yuan J. Gao M. Tang S. Li W. Shi R. Lei A. Chem. Rev. 2015; 115: 12138
- 1d He G. Wang B. Nack WA. Chen G. Acc. Chem. Res. 2016; 49: 635
- 1e Brückl T. Baxter RD. Ishihara Y. Baran PS. Acc. Chem. Res. 2012; 45: 826
- 1f Newhouse T. Baran PS. Angew. Chem. Int. Ed. 2011; 50: 3362
- 1g Osberger TJ. Rogness DC. Kohrt JT. Stepan AF. White MC. Nature 2016; 537: 214
- 1h Neufeldt SR. Sanford MS. Acc. Chem. Res. 2012; 45: 936
- 1i Chen MS. White MC. Science 2007; 318: 783
- 1j White MC. Science 2012; 335: 807
- 2a Zhu X. Chiba S. Chem. Soc. Rev. 2016; 45: 4504
- 2b Guo X.-X. Gu D.-W. Wu Z. Zhang W. Chem. Rev. 2015; 115: 1622
- 2c Gunasekarana N. Adv. Synth. Catal. 2015; 357: 1990
- 2d Iosub AV. Stahl SS. ACS Catal. 2016; 6: 8201
- 2e Klussmann M. Schweitzer-Chaput B. Synlett 2016; 27: 190
- 3a Güell I. Ribas X. Eur. J. Org. Chem. 2014; 3188
- 3b Hussain I. Capricho J. Yawerc MA. Adv. Synth. Catal. 2016; 358: 3320
- 3c Corcoran EB. Pirnot MT. Lin S. Dreher SD. DiRocco DA. Davies IW. Buchwald SL. MacMillan DW. C. Science 2016; 355: 279
- 4a Chung A. Miner MR. Richert KJ. Rieder CJ. Woerpel KA. J. Org. Chem. 2015; 80: 266
- 4b da Silva MJ. Robles-Dutenhefner P. Menini L. Gusevskaya EV. J. Mol. Catal. A: Chem. 2003; 201: 71
- 4c Pei L. Alper H. J. Mol. Catal. 1992; 72: 143
- 4d Li J. Zhang X. Yi H. Liu C. Liu R. Zhang H. Zhuo K. Lei A. Angew. Chem. Int. Ed. 2015; 54: 1261
- 4e Yu J.-W. Mao S. Wang Y.-Q. Tetrahedron Lett. 2015; 56: 1575
- 4f Xu W. Jiang Y. Fu H. Synlett 2012; 23: 801
- 4g De Houwer J. Tehrani KA. Maes BU. W. Angew. Chem. Int. Ed. 2012; 51: 2745
- 4h Murphy EF. Schneider M. Mallat T. Baiker A. Synthesis 2001; 547
- 4i Miao C. Zhao H. Zhao Q. Xia C. Sun W. Catal. Sci. Technol. 2016; 6: 1378
- 4j Tada N. Ban K. Yoshida M. Hirashima S.-i. Miura T. Itoh A. Tetrahedron Lett. 2010; 51: 6098
- 4k Ishii Y. Nakayama K. Takeno M. Sakaguchi S. Iwahama T. Nishiyama T. J. Org. Chem. 1995; 60: 3934
- 4l Rusch F. Schober J.-C. Brasholz M. ChemCatChem 2016; 8: 2881
- 4m Ren L. Wang L. Lv Y. Gao S. Org. Lett. 2015; 17: 2078
- 4n Dos Santos A. Kaim LE. Grimaud L. Org. Biomol. Chem. 2013; 11: 3282
- 4o Zhang X. Ji X. Jiang S. Liu L. Weeks BL. Zhang Z. Green Chem. 2011; 13: 1891
- 4p Wang H. Wang Z. Huang H. Tan J. Xu K. Org. Lett. 2016; 18: 5680
- 4q Zhang Z. Gao Y. Liu Y. Li J. Zie H. Li H. Wang W. Org. Lett. 2015; 17: 5492
- 4r Ma J. Hu Z. Li M. Zhao W. Hu X. Mo W. Hu B. Sun N. Shen Z. Tetrahedron 2015; 71: 6733
- 4s Yi H. Bian C. Hu X. Niu L. Lei A. Chem. Commun. 2015; 51: 14046
- 5a Jiang JA. Chen C. Huang JG. Liu HW. Cao S. Ji YF. Green Chem. 2014; 16: 1248
- 5b Romano AM. Ricci M. J. Mol. Catal. A: Chem. 1997; 120: 71
- 5c Sterckx H. Houwer JD. Mensch C. Caretti I. Tehrani KA. Herrebout WA. Doorslaer SV. Maes BU. W. Chem. Sci. 2016; 7: 346
- 5d Liu J. Zhang X. Yi H. Liu C. Liu R. Zhang H. Zhuo K. Lei A. Angew. Chem. Int. Ed. 2015; 54: 1261
- 5e Zhang L. Ang GY. Chiba S. Org. Lett. 2011; 13: 1622
- 5f Hayashi Y. Komiya N. Suzuki K. Murahashi S. Tetrahedron Lett. 2013; 54: 2706
- 5g Yu J.-W. Mao S. Wang Y.-Q. Tetrahedron Lett. 2015; 56: 1575
- 5h Wang Y.-F. Zhang F.-L. Chiba S. Synthesis 2012; 44: 1526
- 6 Cu-Catalyzed Aerobic C–H Oxygenation of 1a; Typical Procedure: To a test tube charged with CuCl (2.0 mg, 0.02 mmol) and isochroman (1a; 251 μL, 2.0 mmol) in t-BuOH (20 mL) was added TBHP (5.0–6.0 M in decane, 10.9 μL, 0.6 mmol) and the mixture was stirred and heated at 50 °C for 12 h under open air. After cooling to room temperature, the reaction was quenched with 25% aqueous ammonia solution and water then the mixture was extracted with EtOAc. The separated organic layer was dried over Na2SO4 and products were concentrated after filtration. The residue was purified by silica gel column chromatography (EtOAc/hexane, 1:10) to give isochromanone (2a) as a colorless oil in 83% yield.
- 7a For 2a–e: Dohi T. Takenaga N. Goto A. Fujioka H. Kita Y. J. Org. Chem. 2008; 73: 7365
- 7b For 2g, 2b, and 2c: Komagawa H. Maejima Y. Nagano T. Synlett 2016; 27: 789
- 7c For 2f: Zhao B. Lu X. Org. Lett. 2006; 8: 5987
- 7d For 2h: Mineno T. Nikaido N. Kansui H. Chem. Pharm. Bull. 2009; 57: 1167
- 7e For 2i: Gao HY. Ha CY. Synth. Commun. 2006; 36: 3283
- 7f For 2k: Yanai H. Taguchi T. Chem. Commun. 2012; 48: 8967
- 7g For 2j: Kinder MA. Kopf J. Margaretha P. Tetrahedron 2000; 56: 6763
- 7h For 2l, 2m, 2n, and 2o: Zhang Z. Gao Y. Liu Y. Li J. Xie H. Li H. Wang W. Org. Lett. 2015; 17: 5492
- 7i For 2p: Kobayashi K. Kondo Y. Org. Lett. 2009; 11: 2035
- 7j For 2q: Yamamoto Y. Hasegawa H. Yamataka H. J. Org. Chem. 2011; 76: 4652
- 7k For 3: Catino AJ. Nichols JM. Choi H. Gottipamula S. Doyle MP. Org. Lett. 2005; 7: 5167
- 8 Boess E. Wolf LM. Malakar S. Salamone M. Bietti M. Thiel W. Klussmann M. ACS Catal. 2016; 6: 3253
- 9 Boess E. Schmitz C. Klussmann M. J. Am. Chem. Soc. 2012; 134: 5317
- 10 Mukaiyama T. Miyoshi N. Kato J. Ohshima M. Chem. Lett. 1986; 1385
- 11 For a review of organic peroxide rearrangement, see: Yaremenko IA. Vil VA. Demchuk DV. Terentev AO. Beilstein J. Org. Chem. 2016; 12: 1647
Representative examples for Cr:
Representative examples for Co:
Representative examples for Cu:
Representative examples for Mo:
Representative examples for Fe:
Transition-metal-free conditions:
NMR data of all products were consistent with previously reported data.