Subscribe to RSS
DOI: 10.1055/s-0036-1591749
Electrocatalytic Difunctionalization of Olefins as a General Approach to the Synthesis of Vicinal Diamines
Financial support was provided by Cornell University and the Atkinson Center for a Sustainable Future.Publication History
Received: 18 November 2017
Accepted after revision: 10 December 2017
Publication Date:
15 January 2018 (online)
Dedicated to Professor Bruce Ganem on the occasion of his 70th birthday
Abstract
Vicinal diamines are highly prevalent structural motifs in therapeutic agents, bioactive natural products, and molecular catalysts. However, there are currently few unified methodological approaches for making these pertinent synthetic building blocks. This Synpacts article provides an overview of selected landmark developments in the area of olefin diamination. In particular, we highlight our recent contribution on the electrocatalytic diazidation of olefins as a general, selective, and sustainable method for the synthesis of vicinal diamines.
1 Introduction
2 Background: Intermolecular Diamination of Olefins
3 Background: Intermolecular Diazidation of Olefins
4 Electrocatalytic Diazidation of Olefins
-
References
- 1a Lucet D. Le Gall T. Mioskowski C. Angew. Chem. Int. Ed. 1998; 37: 2580
- 1b Lemaire M. Mangeney P. Chiral Diazaligands for Asymmetric Synthesis. In Topics in Organometallic Chemistry. Vol. 15. Springer; Berlin/Heidelberg: 2005
- 2a De Jong S. Nosal DG. Wardrop DJ. Tetrahedron 2012; 68: 4067
- 2b Saibabu Kotti SR. S. Timmons C. Li G. Chem. Biol. Drug Des. 2006; 67: 101
- 2c Cardona F. Goti A. Nat. Chem. 2009; 1: 269
- 2d Wu K. Liang Y. Jiao N. Molecules 2016; 21: 352
- 2e Muñiz K. New J. Chem. 2005; 29: 1371
- 3 Fu N. Sauer GS. Saha A. Loo A. Lin S. Science 2017; 357: 575
- 4a Muñiz K. Martínez C. J. Org. Chem. 2013; 78: 2168
- 4b Streuff J. Hövelmann CH. Nieger M. Muniz K. J. Am. Chem. Soc. 2005; 127: 14586
- 4c Muñiz K. Streuff J. Hövelmann CH. Núñez A. Angew. Chem. Int. Ed. 2007; 46: 7125
- 4d Sibbald PA. Michael FE. Org. Lett. 2009; 11: 1147
- 4e Sequeira FC. Turnpenny BW. Chemler SR. Angew. Chem. Int. Ed. 2010; 49: 6365
- 4f Zabawa TP. Kasi D. Chemler SR. J. Am. Chem. Soc. 2005; 32: 11250
- 4g Shen K. Wang Q. J. Am. Chem. Soc. 2017; 139: 13110
- 4h Shen K. Wang Q. Chem. Sci. 2015; 6: 4279
- 4i Ortiz GX. Jr. Kang B. Wang Q. J. Org. Chem. 2014; 79: 571
- 4j Kim HJ. Cho SH. Chang S. Org. Lett. 2012; 14: 1424
- 5 Kolb HC. VanNieuwenhze MS. Sharpless KB. Chem. Rev. 1994; 94: 2483
- 6 Sharpless KB. Singer SP. J. Org. Chem. 1976; 41: 2504
- 7 Sharpless KB. Patrick DW. Truesdale LK. Biller SA. J. Am. Chem. Soc. 1975; 97: 2305
- 8 Chong AO. Oshima K. Sharpless KB. J. Am. Chem. Soc. 1977; 99: 3420
- 9 Bäckvall JE. Tetrahedron Lett. 1978; 163
- 10 Brunner H. Loskot S. Angew. Chem. Int. Ed. Engl. 1971; 10: 515
- 11 Becker PN. White MA. Bergman RG. J. Am. Chem. Soc. 1980; 102: 5676
- 12a Zhang W. Jacobsen EN. Tetrahedron Lett. 1991; 32: 1711
- 12b Levy N. Scaife CW. J. Am. Chem. Soc. 1946; 1093
- 12c Shechter H. Conrad F. J. Am. Chem. Soc. 1953; 75: 5610
- 13a Li G. Wei HX. Kim SH. Carducci M. Angew. Chem. Int. Ed. 2001; 40: 4277
- 13b Wei HX. Kim SH. Li G. J. Org. Chem. 2002; 67: 4777
- 13c Pei W. Timmons C. Xu X. Wei HW. Li G. Org. Biomol. Chem. 2003; 1: 2919
- 14a Chen D. Timmons C. Wei HX. Li G. J. Org. Chem. 2003; 68: 5742
- 14b Wu H. Ji X. Sun H. An G. Han J. Li G. Pan Y. Tetrahedron 2010; 66: 4555
- 15 Bar GL. J. Lloyd-Jones GC. Booker-Milburn KI. J. Am. Chem. Soc. 2005; 127: 7308
- 16a Zhu Y. Cornwall RG. Du H. Zhao B. Shi Y. Acc. Chem. Res. 2014; 47: 3665
- 16b Du H. Zhao B. Shi Y. J. Am. Chem. Soc. 2007; 129: 762
- 16c Zhao B. Peng X. Zhu Y. Ramirez TA. Cornwall RG. Shi Y. J. Am. Chem. Soc. 2011; 133: 20890
- 16d Zhao B. Yuan W. Du H. Shi Y. Org. Lett. 2007; 9: 4943
- 17a Du H. Yuan W. Zhao B. Shi Y. J. Am. Chem. Soc. 2007; 129: 11688
- 17b Xu L. Shi Y. J. Org. Chem. 2008; 73: 749
- 17c Du H. Zhao B. Yuan W. Shi Y. Org. Lett. 2008; 10: 4231
- 17d Cornwall RG. Zhao B. Shi Y. Org. Lett. 2013; 15: 796
- 18a Iglesia Á. Pérez EG. Muñiz K. Angew. Chem. Int. Ed. 2010; 49: 8109
- 18b Martínez C. Muñiz K. Angew. Chem. Int. Ed. 2012; 51: 7031
- 18c Martínez C. Pérez EG. Iglesias Á. Escudero-Adán EC. Muñiz K. Org. Lett. 2016; 18: 2998
- 18d Martínez C. Muñiz K. Chem. Eur. J. 2016; 22: 7367
- 19a Guthikonda K. Du Bois J. J. Am. Chem. Soc. 2002; 124: 13672
- 19b Olson ED. Maruniak A. Malhotra S. Trost BM. Du Bois J. Org. Lett. 2011; 13: 3336
- 20 Olsen DE. Su JY. Roberts DA. Du Bois J. J. Am. Chem. Soc. 2014; 136: 13506
- 21 Simmons B. Walsi AB. MacMillan DW. C. Angew. Chem. Int. Ed. 2009; 48: 4349
- 22a Muñiz K. Nieger M. Synlett 2003; 211
- 22b Muñiz K. Nieger M. Mansikkamäki H. Angew. Chem. Int. Ed. 2003; 42: 5958
- 22c Muñiz K. Nieger M. Chem. Commun. 2005; 2729
- 22d Almodovar I. Hövelmann CH. Streuff J. Nieger M. Muñiz K. Eur. J. Org. Chem. 2006; 704
- 23 Roben C. Soutu JA. Gonzalez Y. Lishchynskyi A. Muñiz K. Angew. Chem. Int. Ed. 2011; 50: 9478
- 24 Muñiz K. Barreiro L. Romero RM. Martínez C. J. Am. Chem. Soc. 2017; 139: 4354
- 25 Kolb HC. Finn MG. Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
- 26 Schilling CI. Jung N. Biskup M. Schepers U. Bräse S. Chem. Soc. Rev. 2011; 40: 4840
- 27 Hennessy ET. Betley TA. Science 2013; 340: 591
- 28a Haugland MM. Etsagheer H. Porter RJ. Pena J. Brown T. Lovett JE. Anderson EA. J. Am. Chem. Soc. 2016; 138: 9069
- 28b Bräse S. Gil C. Knepper K. Zimmermann V. Angew. Chem. Int. Ed. 2005; 44: 5188
- 28c Jewett JC. Bertozzi CR. Chem. Soc. Rev. 2010; 39: 1272
- 28d Fischer J. Ganellin CR. Analogue-Based Drug Discovery . John Wiley & Sons; Weinheim: 2006: 505
- 29a Minisci F. Acc. Chem. Res. 1975; 8: 165
- 29b Minisci F. Galli F. Cecere M. Gazz. Chim. Ital. 1964; 94: 67
- 29c Minisci F. Galli F. Tetrahedron Lett. 1962; 533
- 30 Fristad WE. Brandvold TA. Peterson JR. Thompson SR. J. Org. Chem. 1985; 50: 3647
- 31 Snider BB. Lin H. Synth. Commun. 1998; 28: 1913
- 32a Armioto M. Yamaguchi H. Fujita E. Nagao Y. Ochiai M. Chem. Pharm. Bull. 1989; 37: 3221
- 32b Magnus P. Lacour J. J. Am. Chem. Soc. 1992; 114: 767
- 32c Moriarty RM. Khosrowshahi JS. Tetrahedron Lett. 1986; 27: 2809
- 32d Chung R. Yu E. Incarvito CD. Austin DJ. Org. Lett. 2004; 6: 3881
- 32e Zong X. Zheng QZ. Jiao N. Org. Biomol. Chem. 2014; 12: 1198
- 32f Sasaki T. Kanematsu K. Yukimoto Y. J. Org. Chem. 1972; 37: 890
- 32g Fumagalli G. Rabet PT. G. Boyd S. Greaney MF. Angew. Chem. Int. Ed. 2015; 54: 11481
- 33 Zhang B. Studer A. Org. Lett. 2014; 16: 1790
- 34 Yuan YA. Lu DF. Chen YR. Xu H. Angew. Chem. Int. Ed. 2016; 55: 534
- 35a Yan M. Kawamata Y. Baran SB. Chem. Rev. 2017; 117: 13230
- 35b Moeller KD. Tetrahedron 2000; 50: 9527
- 35c Francke R. Little RD. Chem. Soc. Rev. 2014; 43: 2492
- 35d Yoshida J. Kataoka K. Horcajada R. Nagaki A. Chem. Rev. 2008; 108: 2265
- 36 Matyjaszewski K. Curr. Org. Chem. 2002; 6: 67
- 37a Huang X. Bergsten TM. Groves JT. J. Am. Chem. Soc. 2015; 137: 5300
- 37b Huang X. Groves JT. ACS Catal. 2016; 6: 751 ; See also refs. 30 and 31
- 38a Karimov RR. Sharma A. Hartwig JF. ACS Cent. Sci. 2016; 2: 715
- 38b Sharma A. Hartwig JF. Nature 2015; 517: 600
- 38c Leggans EK. Barker TJ. Duncan KK. Boger DL. Org. Lett. 2012; 14: 1428
- 38d Deng QH. Bleith T. Wadepohl H. Gade LH. J. Am. Chem. Soc. 2013; 135: 5356 ; See also ref. 34
- 39a Wang F. Qi X. Liang Z. Chen P. Liu G. Angew. Chem. Int. Ed. 2014; 53: 1881
- 39b Zhu R. Buchwald SL. J. Am. Chem. Soc. 2015; 137: 8069
- 39c Tang C. Jiao N. J. Am. Chem. Soc. 2012; 134: 18924
- 39d Vita MV. Waser J. Org. Lett. 2013; 15: 3246 ; See also ref. 33
- 40 For an example of our ongoing work on synthetic electrocatalysis relevant to the alkene diazidation, see: Fu N. Sauer GS. Lin S. J. Am. Chem. Soc. 2017; 139: 15548
For examples, see:
For early examples of related N2O4 chemistry, see:
For a review, see:
For examples, see:
For examples, see:
For examples, see:
For examples, see:
For examples, see:
This Fe-mediated diazidation can also take place using H2O2 as a terminal oxidant; however, the reaction details including product yields were not given:
For examples, see:
For examples, see:
For examples, see: