Subscribe to RSS
DOI: 10.1055/s-0036-1591850
4-Selective Pyridine Functionalization Reactions via Heterocyclic Phosphonium Salts
This work was supported by startup funds from Colorado State University and from the ACS Petroleum Research Fund (ACS PRF56878-DNI1).Publication History
Received: 25 October 2017
Accepted after revision: 06 November 2017
Publication Date:
12 December 2017 (online)
Abstract
Pyridines are widely used across the chemical sciences in applications ranging from pharmaceuticals, ligands for metal complex and battery technologies. Direct functionalization of pyridine C–H bonds is an important strategy to make useful pyridine derivatives, but there are few ways to selectively transform the 4-position of the scaffold. We recently reported that pyridines can be converted into heterocyclic phosphonium salts that can serve as generic handles for multiple subsequent bond-forming processes. Reactions with nucleophiles and transition-metal cross-couplings will be described to make C–O, C–S, C–N, and C–C bonds in a diverse range of pyridines including those embedded in complex pharmaceuticals.
1 Introduction
2 Direct, Regioselective Functionalization of Pyridines
3 4-Position Selectivity via Metal Catalysis
4 Versatile Functional Groups versus Specific Bond Constructions
5 Phosphonium Salts as Reagents for Pyridine Functionalization
6 Conclusions
-
References and Notes
- 1a Baumann M. Baxendale IR. Beilstein J. Org. Chem. 2013; 9: 2265
- 1b Joule JA. Mills K. Heterocyclic Chemistry . 4th ed. Blackwell; Malden, MA: 2000
- 1c Eicher T. Hauptmann S. The Chemistry of Heterocycles: Structures, Reactions, Synthesis and Applications . 2nd ed. Wiley-VCH; Weinheim: 2003
- 1d Grimmett MR. Adv. Heterocycl. Chem. 1993; 58: 271
- 2a Vitaku E. Smith DT. Njardarson JT. J. Med. Chem. 2014; 57: 10257
- 2b http://www.drugs.com/stats/top100/2013/sales.
- 2c https://www.fda.gov/downloads/Drugs/%20DevelopmentApprovalProcess/DrugInnovation/UCM381803.pdf.
- 2d http:// njardarson.lab.arizona.edu/sites/njardarson.lab.arizona.edu/ files/Top200 Pharmacetical Products by US Retail Sales in 2012_0.pdf.
- 3 Zafar MN. Atif AH. Nazar MF. Sumrra SH. Gul-E-Saba Paracha R. Russ. J. Coord. Chem. 2016; 42: 1
- 4 Wurz RP. Chem. Rev. 2007; 107: 5570
- 5a Sevov CS. Brooner RE. M. Chénard E. Assary RS. Moore JS. Rodríguez-López J. Sanford MS. J. Am. Chem. Soc. 2015; 137: 14465
- 5b Sevov CS. Hickey DP. Cook ME. Robinson SG. Barnett S. Minteer SD. Sigman MS. Sanford MS. J. Am. Chem. Soc. 2017; 139: 2924
- 6a Roberts JM. Fini BM. Sarjeant AA. Farha OK. Hupp JT. Scheidt KA. J. Am. Chem. Soc. 2012; 134: 3334
- 6b Suh MP. Cheon YE. Lee EY. Coord. Chem. Rev. 2008; 252: 1007
- 6c Corma A. Garcia H. Xamena FX. L. Chem. Rev. 2010; 110: 4606
- 7a Henry GD. Tetrahedron 2004; 60: 6043
- 7b Allais C. Grassot J-M. Rodriguez J. Constantieux T. Chem. Rev. 2014; 114: 10829
- 7c Hill MD. Chem. Eur. J. 2010; 16: 12052
- 7d Heller B. Hapke M. Chem. Soc. Rev. 2007; 36: 1085
- 8 Albini A. Pietra S. Heterocyclic N-Oxides . CRC Press; Boca Raton, FL: 1991
- 9a Murakami K. Yamada S. Kaneda T. Itami K. Chem. Rev. 2017; 117: 9302
- 9b Nakao Y. Synthesis 2011; 3209
- 10 McGill CK. Rappa A. Adv. Heterocycl. Chem. 1988; 44: 1
- 11a Fier PS. Hartwig JS. Science 2013; 342: 956
- 11b Fier PS. Hartwig JF. J. Am. Chem. Soc. 2014; 136: 10139
- 12 Abramovitch RA. Poulton GA. Chem. Commun. 1967; 274
- 13a Mongin F. Quéguiner G. Tetrahedron 2001; 57: 4059
- 13b Chinchilla R. Nájera C. Yus M. Chem. Rev. 2004; 104: 2667
- 13c Schlosser M. Angew. Chem. Int. Ed. 2004; 44: 376
- 13d Mulvey RE. Mongin F. Uchiyama M. Kondo Y. Angew. Chem. Int. Ed. 2007; 46: 3802
- 13e Schlosser M. Mongin F. Chem. Soc. Rev. 2007; 36: 1161
- 13f Kondo Y. Shilai M. Uchiyama M. Sakamoto T. J. Am. Chem. Soc. 1999; 121: 3539
- 13g Jaric M. Haag BA. Unsinn A. Karaghiosoff K. Knochel P. Angew. Chem. Int. Ed. 2010; 49: 5451
- 14a Takagi J. Sato K. Hartwig JF. Ishiyama T. Miyaura N. Tetrahedron Lett. 2002; 43: 5649
- 14b Cheng C. Hartwig JF. J. Am. Chem. Soc. 2015; 137: 592
- 15a Ye M. Gao GL. Yu JQ. J. Am. Chem. Soc. 2011; 133: 6964
- 15b Ye M. Gao GL. Edmunds AJ. Worthington PA. Morris JA. Yu JQ. J. Am. Chem. Soc. 2011; 133: 19090
- 15c Li B.-J. Shi Z.-J. Chem. Sci. 2011; 2: 488
- 16a Wen P. Li Y. Zhou K. Ma C. Lan X. Ma C. Huang G. Adv. Synth. Catal. 2012; 354: 2135
- 16b Nakao Y. Kanyiva KS. Hiyama T. J. Am. Chem. Soc. 2008; 130: 2448
- 16c Tobisu M. Hyodo I. Chatani N. J. Am. Chem. Soc. 2009; 131: 12070
- 16d Donthiri RR. Pappula V. Reddy NN. K. Bairagi D. Adimurthy S. J. Org. Chem. 2014; 79: 11277
- 16e Kawashima T. Takao T. Suzuki H. J. Am. Chem. Soc. 2007; 129: 11006
- 16f Lewis JC. Bergman RG. Ellman JA. J. Am. Chem. Soc. 2007; 129: 5332
- 16g Jordan RF. Taylor DF. J. Am. Chem. Soc. 1989; 111: 778
- 16h Wen J. Qin S. Ma L.-F. Dong L. Zhang J. Liu S.-S. Duan Y.-S. Chen S.-Y. Hu C.-W. Yu X.-Q. Org. Lett. 2010; 12: 2694
- 16i Thompson ME. Baxter SM. Bulls AR. Burger BJ. Nolan MC. Santarsiero BD. Schaefer WP. Bercaw JE. J. Am. Chem. Soc. 1987; 109: 203
- 16j Spek AL. Organometallics 1994; 13: 3881
- 17a Duncton MA. Med. Chem. Comm. 2011; 2: 1135
- 17b Seiple IB. Su S. Rodriguez RA. Gianatassio R. Fujiwara Y. Sobel AL. Baran PS. J. Am. Chem. Soc. 2010; 132: 13194
- 17c Jin J. MacMillan DW. Nature 2015; 525: 87
- 17d DiRocco DA. Dykstra K. Krska S. Vachal P. Conway DV. Tudge M. Angew. Chem. Int. Ed. 2014; 53: 4802
- 18 Tsai C.-C. Shih W.-C. Fang C.-H. Li C.-Y. Ong T.-G. Yap GP. A. J. Am. Chem. Soc. 2010; 132: 11887
- 19a Nakao Y. Yamada Y. Kashihara N. Hiyama T. J. Am. Chem. Soc. 2010; 132: 13666
- 19b Nakao Y. Kanyiva KS. Hiyama T. J. Am. Chem. Soc. 2008; 130: 2448
- 20 Yang L. Semba K. Nakao Y. Angew. Chem. Int. Ed. 2017; 56: 4853
- 21 Obligacion JV. Semproni SP. Chirik PJ. J. Am. Chem. Soc. 2014; 136: 4133
- 22a Anduo T. Saga Y. Komai H. Matsunaga S. Kanai M. Angew. Chem. Int. Ed. 2013; 52: 3213
- 22b Mizumori T. Hata T. Urabe H. Chem. Eur. J. 2015; 21: 422
- 23 Li Y. Deng G. Zeng X. Organometallics 2016; 35: 747
- 24 Brown DG. Boström J. 2016; 59: 4443
- 25 Bull JA. Mosseau JJ. Pelletier G. Charette AB. Chem. Rev. 2012; 112: 2642
- 26a Akiba K.-Y. Nishihara Y. Wada M. Tetrahedron Lett. 1983; 24: 5269
- 26b Comins DL. King LS. Smith ED. Février FC. Org. Lett. 2005; 7: 5059
- 27 Corey EJ. Tian Y. Org Lett. 2005; 7: 5535
- 28 Fier PS. J. Am. Chem. Soc. 2017; 139: 9499
- 29 Nagase M. Kuninobu Y. Kanai M. J. Am. Chem. Soc. 2016; 138: 6103
- 30a Anders E. Markus F. Tetrahedron Lett. 1987; 28: 2675
- 30b Anders E. Markus F. Chem. Ber. 1989; 122: 113
- 31a Hilton MC. Dolewski RD. McNally A. J. Am. Chem. Soc. 2016; 138: 13806
- 31b Zhang X. McNally A. Angew. Chem. Int. Ed. 2017; 56: 9833
- 32 Cernak T. Dykstra KD. Tyagarajan S. Vachal P. Krska SW. Chem. Soc. Rev. 2016; 45: 546
- 33 Bedford MS. Yang X. Jolly KM. Binnicker RL. Cramer SB. Keen CE. Mairena CJ. Patel AP. Rivenbank MT. Galabura Y. Luzinov I. Smith RC. Polym. Chem. 2015; 6: 900
- 34 Finer J.-P. Ligand Coupling Reactions with Heteroaromatic Compounds, Tetrahedron Organic Chemistry Series. Vol. 18. Pergamon Press; Oxford: 2009: 95
- 35a Razuvaev GA. Osanova NA. J. Organomet. Chem. 1972; 38: 77
- 35b Razuvaev GA. Osanova NA. Brilkina TG. Zinovjeva TI. Sharutin VV. J. Organomet. Chem. 1975; 99: 93
- 35c Eyles CT. Trippett S. J. Chem. Soc. C 1966; 67
- 35d Grayson M. Keough P.-TJ. J. Am. Chem. Soc. 1960; 82: 3919
- 36a Wu X. Fors BP. Buchwald SL. Angew. Chem. Int. Ed. 2011; 50: 9943
- 36b Gowrisankar S. Sergeev AG. Anbarasan P. Spannenberg A. Neumann H. Beller M. J. Am. Chem. Soc. 2010; 132: 11592
- 36c Terrett JA. Cuthbertson JD. Shurtleff VW. MacMillan DW. C. Nature 2015; 524: 330
- 36d Walsh K. Sneddon HF. Moody CJ. RSC Adv. 2014; 4: 28072
- 36e Lian Y. Coffey SB. Li Q. Londregan AT. Org. Lett. 2016; 18: 1362
- 37 Dukat M. Ramunno A. Banzi R. Damaj MI. Martin B. Glennon RA. Bioorg. Med. Chem. Lett. 2005; 15: 4308
- 38a Campeau L.-C. Fagnou K. Chem. Soc. Rev. 2007; 36: 1058
- 38b Zhao D. You DJ. Hu C. Chem. Eur. J. 2011; 17: 5466
For examples, see: