Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2019; 30(08): 947-950
DOI: 10.1055/s-0037-1611477
DOI: 10.1055/s-0037-1611477
letter
Palladium-Catalyzed [3+2] Cycloaddition of Vinylcyclopropane and Ketones
We acknowledge financial support from the National Natural Science Foundation of China (NSFC) (21772215, 21532010, and 21472214), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB20030100), the NSFC and the Research Grants Council of Hong Kong Joint Research Scheme (21361162001), the Chinese Academy of Sciences, the Technology Commission of Shanghai Municipality, and the Croucher Foundation of Hong Kong.Further Information
Publication History
Received: 27 January 2019
Accepted after revision: 04 March 2019
Publication Date:
10 April 2019 (online)
Abstract
A Pd-catalyzed [3+2] cycloaddition reaction of vinylcyclopropane and trifluoromethyl ketones as well as α-keto esters were developed, affording tetrahydrofurans in high yield.
Key words
palladium - [3+2] cycloaddition - vinylcyclopropane - trifluoromethyl ketone - α-keto ester - tetrahydrofuranSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1611477.
- Supporting Information
-
References and Notes
- 1a Kumar I. RSC Adv. 2014; 4: 16397
- 1b Ganesh V, Chandrasekaran S. Synthesis 2016; 48: 4347
- 1c Vivekanand T, Satpathi B, Bankar SK, Ramasastry SS. V. RSC Adv. 2018; 8: 18576
- 1d Huang G, Yin B. Adv. Synth. Catal. 2019;
- 2a Shimizu I, Ohashi Y, Tsuji J. Tetrahedron Lett. 1985; 26: 3825
- 2b Yamamoto K, Ishida T, Tsuji J. Chem. Lett. 1987; 1157
- 3a Trost BM, Morris PJ. Angew. Chem. Int. Ed. 2011; 50: 6167
- 3b Goldberg AF. G, Stoltz BM. Org. Lett. 2011; 13: 4474
- 3c Trost BM, Morris PJ, Sprague SJ. J. Am. Chem. Soc. 2012; 134: 17823
- 3d Dieskau AP, Holzwarth MS, Plietker B. J. Am. Chem. Soc. 2012; 134: 5048
- 3e Mei L.-Y, Wei Y, Xu Q, Shi M. Organometallics 2012; 31: 7591
- 3f Wei F, Ren C.-L, Wang D, Liu L. Chem. Eur. J. 2015; 21: 2335
- 3g Li W.-K, Liu Z.-S, He L, Kang T.-R, Liu Q.-Z. Asian J. Org. Chem. 2015; 4: 28
- 3h Xie M.-S, Wang Y, Li J.-P, Du C, Zhang Y.-Y, Hao E.-J, Zhang Y.-M, Qu G.-R, Guo H.-M. Chem. Commun. 2015; 51: 12451
- 3i Liu Z.-S, Li W, Kang T, He L, Liu Q. Org. Lett. 2015; 17: 150
- 3j Meazza M, Rios R. Chem. Eur. J. 2016; 22: 9923
- 3k Laugeois M, Ponra S, Ratovelomanana-Vidal V, Michelet V, Vitale MR. Chem. Commun. 2016; 52: 5332
- 3l Halskov KS, Næsborg L, Tur F, Jørgensen KA. Org. Lett. 2016; 18: 2220
- 3m Zhang K, Meazza M, Izaga A, Contamine C, Gimeno MC, Herrera RP, Rios R. Synthesis 2017; 49: 167
- 3n Lin Y, Wang Q, Wu Y, Wang C, Jia H, Zhang C, Huang J, Guo H. RSC Adv. 2018; 8: 40798
- 4a Laugeois M, Ling J, Férard C, Michelet V, Ratovelomanana-Vidal V, Vitale MR. Org. Lett. 2017; 19: 2266
- 4b Gee YS, Rivinoja DJ, Wales SM, Gardiner MG, Ryan JH, Hyland CJ. T. J. Org. Chem. 2017; 82: 13517
- 4c Zhang J.-Q, Tong F, Sun B.-B, Fan W.-T, Chen J.-B, Hu D, Wang X.-W. J. Org. Chem. 2018; 83: 2882
- 4d Sun M, Zhu Z.-Q, Gu L, Wan X, Mei G.-J, Shi F. J. Org. Chem. 2018; 83: 2341
- 4e Ling J, Laugeois M, Michelet V, Ratovelomanana-Vidal V, Vitale MR. Synlett 2018; 29: 928
- 4f Yuan Z, Wei W, Lin A, Yao H. Org. Lett. 2016; 18: 3370
- 5 Parsons AT, Campbell MJ, Johnson JS. Org. Lett. 2008; 10: 2541
- 6a Tombe R, Kurahashi T, Matsubara S. Org. Lett. 2013; 15: 1791
- 6b Pursley D, Plietker B. Synlett 2014; 25: 2316
- 6c Wang Q, Wang C, Shi W, Xiao Y, Guo H. Org. Biomol. Chem. 2018; 16: 4881
- 6d Spielmann K, Tosi E, Lebrun A, Niel G, van der Lee A, de Figueiredo RM, Campagne J.-M. Tetrahedron 2018; 74: 6497
- 7a Mei L.-Y, Wei Y, Xu Q, Shi M. Organometallics 2013; 32: 3544
- 7b Pohlhaus PD, Sanders SD, Parsons AT, Li W, Johnson JS. J. Am. Chem. Soc. 2008; 130: 8642
- 8a Wu W.-Q, Ding C.-H, Hou X.-L. Synlett 2012; 23: 1035
- 8b Xu C.-F, Zheng B.-H, Suo J.-J, Ding C.-H, Hou X.-L. Angew. Chem. Int. Ed. 2015; 54: 1604
- 8c Suo J.-J, Du J, Liu Q.-R, Chen D, Ding C.-H, Peng Q, Hou X.-L. Org. Lett. 2017; 19: 6658
- 8d Suo J.-J, Liu W, Du J, Ding C.-H, Hou X.-L. Chem. Asian J. 2018; 13: 959
- 8e Wang W.-Y, Wu J.-Y, Liu Q.-R, Liu X.-Y, Ding C.-H, Hou X.-L. Org. Lett. 2018; 20: 4773
- 8f Du J, Jiang Y.-J, Suo J.-J, Wu W.-Q, Liu X.-Y, Chen D, Ding C.-H, Wei Y, Hou X.-L. Chem. Commun. 2018; 54: 13143
- 9a Vogl EM, Grçger H, Shibasaki M. Angew. Chem. Int. Ed. 1999; 38: 1570
- 9b Fagnou K, Lautens M. Angew. Chem. Int. Ed. 2002; 41: 26
- 9c Västilä P, Zaitsev AB, Wettergren J, Privalov T, Adolfsson H. Chem. Eur. J. 2006; 12: 3218
- 10 General Experimental Procedures for Products 3 To a flame-dried sealing tube were added Pd(OAc)2 (2.25 mg, 0.01 mmol), (rac)-BINAP (12.45 mg, 0.02 mmol), and freshly distilled anhydrous tetrahydrofuran (1.0 mL). The resulting mixture was allowed to stir for 30 min. The ketone 2 (0.2 mmol) and vinylcyclopropane 1 (0.5 mmol) were added subsequently. The resulting reaction mixture was stirred at room temperature for 72 h. After the volatile was removed in vacuo, the ratio of two diastereoisomers was determined by crude 1H NMR analysis. The yield was determined by NMR spectroscopy using mesitylene as the internal standard. Then the resulting residue was purified by preparative TLC to afford pure sample for characterization. 2-Phenyl-2-(trifluoromethyl)-5-vinyldihydrofuran-3,3(2H)-dicarbonitrile (3a) White solid, mp 48.5–48.7 °C, yield 89%, dr 1.3:1. 1H NMR (400 MHz in CDCl3; taken as a mixture of diastereomers): δ (minor diastereomer) = 7.70–7.75 (m, 2 H), 7.48–7.52 (m, 3 H), 5.96 (ddd, J = 17.2, 10.0, 6.8 Hz, 1 H), 5,51 (d, J = 18.4 Hz, 1 H), 5.38 (d, J = 10.4 Hz, 1 H), 5.07–4.99 (m, 1 H), 3.09–3.01 (m, 1 H), 2.88 (dd, J = 13.6, 8.4 Hz, 1 H); δ (major diastereomer) = 6.03 (ddd, J = 17.2, 10.0, 6.8 Hz, 1 H), 5.55 (d, J = 18.4 Hz, 1 H), 5.45 (d, J = 10.4 Hz, 1 H), 5.21–5.12 (m, 1 H), 3.31 (dd, J = 13.6, 8.4 Hz, 1 H), 2.87–2.79 (m, 1 H). 13C NMR (101 MHz in CDCl3; taken as a mixture of diastereomers): δ = 134.8, 133.0, 132.4, 132.0, 130.7 (2 C), 129.0, 128.9, 126.5, 126.4, 124.8 (q, J = 291 Hz), 124.1 (q, J = 291 Hz), 120.9, 119.9, 112.7, 112.2, 111.7, 111.1, 90.3 (q, J = 29 Hz, 2 C), 81.7, 44.3 (2 C), 43.8, 42.2.19F NMR (376 MHz in CDCl3; taken as a mixture of diastereomers): δ = –72.32, –74.07. IR (film): 1450, 1348, 1267, 1192, 1156, 1117, 1104, 1066, 1032, 1015, 999, 983, 942, 763, 725, 697 cm–1. GC–MS (EI): m/z (rel.): 292 [M+], 223, 175 (100), 118, 105, 91, 77. HRMS (EI): m/z calcd for C15H11F3N2O [M+]: 292.0823; found: 292.0832.
For Lewis acid catalyzed [3+2] cycloaddition of vinyl cyclopropane with acetone, see: