Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2021; 32(15): 1560-1564
DOI: 10.1055/s-0040-1705954
DOI: 10.1055/s-0040-1705954
cluster
Modern Nickel-Catalyzed Reactions
Nickel-Catalyzed Decarbonylative Alkynylation of Acyl Fluorides with Terminal Alkynes under Copper-Free Conditions
Abstract
Nickel-catalyzed decarbonylative alkynylation of acyl fluorides with terminal silylethynes under copper-free conditions is described. This newly developed method has a wide substrate scope, affording internal silylethynes in moderate to high yields. The formation of 1,3-diynes as homocoupled products and conjugate enones as carbonyl-retentive products were effectively suppressed.
Key words
nickel catalysis - decarbonylation - silylalkynes - alkynylation - acyl fluorides - sila-Sonogashira–Hagihara reactionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1705954.
- Supporting Information
Publication History
Received: 09 September 2020
Accepted after revision: 21 September 2020
Article published online:
28 October 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Sonogashira K, Tohda Y, Hagihara N. Tetrahedron Lett. 1975; 4467
- 1b Cassar L. J. Organomet. Chem. 1975; 93: 253
- 1c Dieck HA, Heck FR. J. Organomet. Chem. 1975; 93: 259
- 2a Sonogashira K. In Comprehensive Organic Synthesis Vol. 3. Trost BM, Fleming I. Pergamon; Oxford: 1991. Chap. 2.4,. 521
- 2b Sonogashira K. J. Organomet. Chem. 2002; 653: 46
- 2c Negishi E, Anastasia L. Chem. Rev. 2003; 103: 1979
- 2d Nicolaou KC, Bulger PG, Sarlah D. Angew. Chem. Int. Ed. 2005; 44: 4442
- 2e Yin L, Liebscher J. Chem. Rev. 2007; 107: 133
- 2f Chinchilla R, Nájera C. Chem. Rev. 2007; 107: 874
- 2g Thomas AM, Sujatha A, Anilkumar G. RSC Adv. 2014; 4: 21688
- 2h Karak M, Barbosa LC. A, Hargaden GC. RSC Adv. 2014; 4: 53442
- 3a Leadbeater NE, Tominack BJ. Tetrahedron Lett. 2003; 44: 8653
- 3b Soheili A, Albaneze-Walker J, Murry JA, Dormer PG, Hughes DL. Org. Lett. 2003; 5: 4191
- 3c Ljungdahl T, Pettersson K, Albinsson B, Mårtensson J. J. Org. Chem. 2006; 71: 1677
- 3d Jiang Q, Li H, Zhang X, Xu B, Su W. Org. Lett. 2018; 20: 2424
- 3e He J, Yang K, Zhao J, Cao S. Org. Lett. 2019; 21: 9714
- 4a Nishihara Y, Ikegashira K, Mori A, Hiyama T. Chem. Lett. 1997; 1233
- 4b Nishihara Y, Ikegashira K, Hirabayashi K, Ando J.-i. J. Org. Chem. 2000; 65: 1780
- 4c Nishihara Y, Inoue E, Okada Y, Takagi K. Synlett 2008; 3041
- 4d Nishihara Y, Inoue E, Ogawa D, Okada Y, Noyori S, Takagi K. Tetrahedron Lett. 2009; 50: 4643
- 4e Nishihara Y, Noyori S, Okamoto T, Suetsugu M, Iwasaki M. Chem. Lett. 2011; 40: 972
- 4f Nishihara Y, Inoue E, Noyori S, Ogawa D, Okada Y, Iwasaki M, Takagi K. Tetrahedron 2012; 68: 4869
- 4g Nishihara Y, Ogawa D, Noyori S, Iwasaki M. Chem. Lett. 2012; 41: 1053
- 5a Koseki Y, Omino K, Anzai S, Nagasaka T. Tetrahedron Lett. 2000; 41: 2377
- 5b Halbes U, Pale P. Tetrahedron Lett. 2002; 43: 2039
- 5c Sørensen US, Pombo-Villar E. Tetrahedron 2005; 61: 2697
- 5d Zhou Z.-L, Zhao L, Zhang S, Vincent K, Lam S, Henze D. Synth. Commun. 2012; 42: 1622
- 5e Capani JS. Jr, Cochran JE, Liang J. J. Org. Chem. 2019; 84: 9378
- 6a Beletskaya IP, Latyshev GV, Tsvetkov AV, Lukashev NV. Tetrahedron Lett. 2003; 44: 5011
- 6b Wang L, Li P, Zhang Y. Chem. Commun. 2004; 514
- 6c Vechorkin O, Barmaz D, Proust V, Hu X. J. Am. Chem. Soc. 2009; 131: 12078
- 6d Pérez García PM, Ren P, Scopelliti R, Hu XL. ACS Catal. 2015; 5: 1164
- 7a Biradar DB, Gau H.-M. Chem. Commun. 2011; 47: 10467
- 7b Xu G, Li X, Sun H. J. Organomet. Chem. 2011; 696: 3011
- 7c Moghaddam FM, Tavakoli G, Rezvani HR. Catal. Commun. 2015; 60: 82
- 7d Nowrouzi N, Zarei M. Tetrahedron 2015; 71: 7847
- 8a Okuro K, Furuune M, Enna M, Miura M, Nomura M. J. Org. Chem. 1993; 58: 4716
- 8b Gujadhur RK, Bates CG, Venkataraman D. Org. Lett. 2001; 3: 4315
- 8c Ma D, Liu F. Chem. Commun. 2004; 1934
- 8d Saejueng P, Bates CG, Venkataraman D. Synthesis 2005; 1706
- 8e Tsai W.-T, Lin Y.-Y, Chen Y.-A, Lee C.-F. Synlett 2014; 25: 443
- 8f Zhang H, Sun N, Hu B, Shen Z, Hu X, Jin L. Org. Chem. Front. 2019; 6: 1983
- 9 Xu Y, Zhao J, Tang X, Wu W, Jiang H. Adv. Synth. Catal. 2014; 356: 2029
- 10 Zhao Y, Song Q. Chem. Commun. 2015; 51: 13272
- 11a Qian L.-W, Sun M, Dong J, Xu Q, Zhou Y, Yin S.-F. J. Org. Chem. 2017; 82: 6764
- 11b Tian Z.-Y, Wang S.-M, Jia S.-J, Song H.-X, Zhang C.-P. Org. Lett. 2017; 19: 5454
- 12 Okita T, Kumazawa K, Takise R, Muto K, Itami K, Yamaguchi J. Chem. Lett. 2017; 46: 218
- 13 Srimontree W, Chatupheeraphat A, Liao H.-H, Rueping M. Org. Lett. 2017; 19: 3091
- 14 Liu L, Zhou D, Liu M, Zhou Y, Chen T. Org. Lett. 2018; 20: 2741
- 15a Blanchard N, Bizet V. Angew. Chem. Int. Ed. 2019; 58: 6814
- 15b Zhao Q, Szostak M. ChemSusChem 2019; 12: 2983
- 15c Ogiwara Y, Sakai N. Angew. Chem. Int. Ed. 2020; 59: 574
- 15d Wang Z, Wang X, Nishihara Y. Chem. Asian J. 2020; 15: 1234
- 16a Zhang Y, Rovis T. J. Am. Chem. Soc. 2004; 126: 15964
- 16b Ogiwara Y, Maegawa Y, Sakino D, Sakai N. Chem. Lett. 2016; 45: 790
- 16c Ogiwara Y, Sakino D, Sakurai Y, Sakai N. Eur. J. Org. Chem. 2017; 4324
- 16d Boreux A, Indukuri K, Gagosz F, Riant O. ACS Catal. 2017; 7: 8200
- 16e Ogiwara Y, Iino Y, Sakai N. Chem. Eur. J. 2019; 25: 6513
- 16f Pan F.-F, Guo P, Li C.-L, Su P, Shu X.-Z. Org. Lett. 2019; 21: 3701
- 16g Han J, Zhou W, Zhang P.-C, Wang H, Zhang R, Wu H.-H, Zhang J. ACS Catal. 2019; 9: 6890
- 16h Ogiwara Y, Hosaka S, Sakai N. Organometallics 2020; 39: 856
- 16i Sakurai Y, Ogiwara Y, Sakai N. Chem. Eur. J. 2020; 26: 12972
- 17 Keaveney ST, Schoenebeck F. Angew. Chem. Int. Ed. 2018; 57: 4073
- 18 Ogiwara Y, Sakurai Y, Hattori H, Sakai N. Org. Lett. 2018; 20: 4204
- 19 Malapit CA, Bour JR, Brigham CE, Sanford MS. Nature 2018; 563: 100
- 20 Sakurai S, Yoshida T, Tobisu M. Chem. Lett. 2019; 48: 94
- 21a Okuda Y, Xu J, Ishida T, Wang C.-a, Nishihara Y. ACS Omega 2018; 3: 13129
- 21b Wang Z, Wang X, Nishihara Y. Chem. Commun. 2018; 54: 13969
- 21c Wang X, Wang Z, Liu L, Asanuma Y, Nishihara Y. Molecules 2019; 24: 1671
- 21d Wang X, Wang Z, Nishihara Y. Chem. Commun. 2019; 55: 10507
- 21e Fu L, Chen Q, Wang Z, Nishihara Y. Org. Lett. 2020; 22: 2350
- 22 Chen Q, Fu L, Nishihara Y. Chem. Commun. 2020; 56: 7977
- 23a Cornella J, Zarate C, Martin R. Chem. Soc. Rev. 2014; 43: 8081
- 23b Tobisu M, Chatani N. Acc. Chem. Res. 2015; 48: 1717
- 23c Zeng H, Qiu Z, Domínguez-Huerta A, Hearne Z, Chen Z, Li C.-J. ACS Catal. 2017; 7: 510
-
24 4-Chlorobenzoyl fluoride gave the desired product in only 34% yield.
- 25 Gazvoda M, Virant M, Pinter B, Košmrlj J. Nat. Commun. 2018; 9: 4814
- 26 Tougerti A, Negri S, Jutand A. Chem. Eur. J. 2007; 13: 666
- 27 A Ni-catalyzed homohydroalkynylation of silylated alkynes has been reported; see: Shirakura M, Suginome M. J. Am. Chem. Soc. 2008; 130: 5410
-
28
Silylated Internal Alkynes 3: General Procedure
An oven-dried 20 mL Schlenk tube containing a magnetic stirring bar was charged with Ni(cod)2 (5.5 mg, 0.02 mmol, 10 mol%), DPPP (12.4 mg, 0.03 mmol, 15 mol%), 1,4-dioxane (1 mL) under dry N2, and the mixture was stirred for 30 s at r.t. The appropriate acyl fluoride 1 (0.2 mmol), silyl alkyne 2 (0.4 mmol), and Bu3N (0.3 mmol) were added, and the mixture was heated at 140 °C in a heating block with stirring for 24 h, then cooled to r.t. The reaction was quenched with sat. aq NH4Cl, and the mixture was extracted with Et2O. The combined organic phase was dried (MgSO4) and concentrated under vacuum, and the residue was purified by column chromatography (silica gel, EtOAc–hexane).
Triisopropyl(2-naphthylethynyl)silane (3aa)13
Yellow oil; yield: 53.6 mg (87%); Rf
= 0.54 (hexane). 1H NMR (400 MHz, CDCl3): δ = 1.19 (s, 21 H), 7.48–7.50 (m, 2 H), 7.54 (dd, J = 8.4, 2.0 Hz, 1 H), 7.76–7.82 (m, 3 H), 8.02 (s, 1 H). 13C{1H} NMR (101 MHz, CDCl3): δ = 11.5, 18.9, 91.1, 107.6, 121.0, 126.6, 126.8, 127.85, 127.87, 128.0, 129.0, 132.0, 133.0, 133.1.
For selected examples, see:
For selected examples, see:
For selected examples, see:
For selected examples, see:
For selected examples, see:
For selected reviews on transition-metal-catalyzed transformations of acyl fluorides, see:
For selected examples, see: