Subscribe to RSS
DOI: 10.1055/s-0040-1705977
A Molecular Stereostructure Descriptor Based On Spherical Projection
Financial support from the National Natural Science Foundation of China (21702182 and 21873081), the Fundamental Research Funds for the Central Universities (2020XZZX002-02), and the State Key Laboratory of Clean Energy Utilization (ZJUCEU2020007).
![](https://www.thieme-connect.de/media/synlett/202118/lookinside/thumbnails/st-2020-b0413-c_10-1055_s-0040-1705977-1.jpg)
Abstract
Description of molecular stereostructure is critical for the machine learning prediction of asymmetric catalysis. Herein we report a spherical projection descriptor of molecular stereostructure (SPMS), which allows precise representation of the molecular van der Waals (vdW) surface. The key features of SPMS descriptor are presented using the examples of chiral phosphoric acid, and the machine learning application is demonstrated in Denmark’s dataset of asymmetric thiol addition to N-acylimines. In addition, SPMS descriptor also offers a color-coded diagram that provides straightforward chemical interpretation of the steric environment.
Key words
molecular descriptor - stereostructure - steric environment - machine learning - asymmetric catalysisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1705977.
- Supporting Information
Publication History
Received: 23 July 2020
Accepted after revision: 23 October 2020
Article published online:
18 November 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Giacalone F, Gruttadauria M, Agrigento P, Noto R. Chem. Soc. Rev. 2012; 41: 2406
- 1b Brak K, Jacobsen EN. Angew. Chem. Int. Ed. 2013; 52: 534
- 1c Janssen-Muller D, Schlepphorst C, Glorius F. Chem. Soc. Rev. 2017; 46: 4845
- 1d Zheng C, You SL. Nat. Prod. Rep. 2019; 36: 1589
- 2a Azzarito V, Long K, Murphy NS, Wilson AJ. Nat. Chem. 2013; 5: 161
- 2b Ivanov AA, Khuri FR, Fu H. Trends Pharmacol. Sci. 2013; 34: 393
- 2c Nero TL, Morton CJ, Holien JK, Wielens J, Parker MW. Nat. Rev. Cancer 2014; 14: 248
- 2d Lu S, Zhang J. J. Med. Chem. 2019; 62: 24
- 3a Tan G, Zhao LD, Kanatzidis MG. Chem. Rev. 2016; 116: 12123
- 3b Yue Y, Liang H. Adv. Energy Mater. 2017; 7: 1602545
- 3c Sun H, Zhu J, Baumann D, Peng L, Xu Y, Shakir I, Huang Y, Duan X. Nat. Rev. Mater. 2018; 4: 45
- 3d Mao L, Stoumpos CC, Kanatzidis MG. J. Am. Chem. Soc. 2019; 141: 1171
- 4 Durand DJ, Fey N. Chem. Rev. 2019; 119: 6561
- 5 Tolman CA. Chem. Rev. 1977; 77: 313
- 6 Dierkes P, van Leeuwen P. J. Chem. Soc., Dalton Trans. 1999; 1519
- 7 Verloop A. In Drug Design, Vol. 3. Ariens EJ. Academic Press; Pittsburgh: 1976: 133
- 8a Zabrodsky H, Peleg S, Avnir D. J. Am. Chem. Soc. 1992; 114: 7843
- 8b Zabrodsky H, Peleg S, Avnir D. J. Am. Chem. Soc. 1993; 115: 8278
- 8c Zabrodsky H, Avnir D. Adv. Mol. Struct. Res. 1995; 1: 1
- 8d Zabrodsky H, Avnir D. J. Am. Chem. Soc. 1995; 117: 462
- 9a Grimme S. Chem. Phys. Lett. 1998; 297: 22
- 9b Lipkowitz KB, Gao D, Katzenelson O. J. Am. Chem. Soc. 1999; 121: 5559
- 9c Bellarosa L, Zerbetto F. J. Am. Chem. Soc. 2003; 125: 1975
- 10a Lipkowitz KB, Schefzick S, Avnir D. J. Am. Chem. Soc. 2001; 123: 6710
- 10b Lipkowitz KB, Schefzick S. Chirality 2002; 14: 677
- 10c Alvarez S, Schefzick S, Lipkowitz K, Avnir D. Chem. Eur. J. 2003; 9: 5832
- 10d Handgraaf JW, Reek JN. H, Bellarosa L, Zerbetto F. Adv. Synth. Catal. 2005; 347: 792
- 10e Zahrt AF, Denmark SE. Tetrahedron 2019; 75: 1841
- 11a Kayala MA, Azencott CA, Chen JH, Baldi P. J. Chem. Inf. Model. 2011; 51: 2209
- 11b Bickerton GR, Paolini GV, Besnard J, Muresan S, Hopkins AL. Nat. Chem. 2012; 4: 90
- 11c Hase F, Valleau S, Pyzer-Knapp E, Aspuru-Guzik A. Chem. Sci. 2016; 7: 5139
- 11d Niemeyer ZL, Milo A, Hickey DP, Sigman MS. Nat. Chem. 2016; 8: 610
- 11e Ahneman DT, Estrada JG, Lin S, Dreher SD, Doyle AG. Science 2018; 360: 186
- 11f Nielsen MK, Ahneman DT, Riera O, Doyle AG. J. Am. Chem. Soc. 2018; 140: 5004
- 11g Reid JP, Sigman MS. Nature 2019; 571: 343
- 11h Zhang Z, Schott JA, Liu M, Chen H, Lu X, Sumpter BG, Fu J, Dai S. Angew. Chem. Int. Ed. 2019; 58: 259
- 11i Beker W, Gajewska EP, Badowski T, Grzybowski BA. Angew. Chem. Int. Ed. 2019; 58: 4515
- 11j Tomberg A, Johansson MJ, Norrby PO. J. Org. Chem. 2019; 84: 4695
- 11k Wang X, Ye S, Hu W, Sharman E, Liu R, Liu Y, Luo Y, Jiang J. J. Am. Chem. Soc. 2020; 142: 7737
- 11l Singh S, Pareek M, Changotra A, Banerjee S, Bhaskararao B, Balamurugan P, Sunoj RB. Proc. Natl. Acad. Sci. U.S.A. 2020; 117: 1339
- 12a Rupp M, Tkatchenko A, Muller KR, von Lilienfeld OA. Phys. Rev. Lett. 2012; 108: 058301
- 12b Faber F, Lindmaa A, von Lilienfeld OA, Armiento R. Int. J. Quantum Chem. 2015; 115: 1094
- 12c Marcou G, Aires de Sousa J, Latino DA, de Luca A, Horvath D, Rietsch V, Varnek A. J. Chem. Inf. Model. 2015; 55: 239
- 12d Skoraczynski G, Dittwald P, Miasojedow B, Szymkuc S, Gajewska EP, Grzybowski BA, Gambin A. Sci. Rep. 2017; 7: 3582
- 12e Ragoza M, Hochuli J, Idrobo E, Sunseri J, Koes DR. J. Chem. Inf. Model. 2017; 57: 942
- 12f Schutt KT, Arbabzadah F, Chmiela S, Muller KR, Tkatchenko A. Nat. Commun. 2017; 8: 13890
- 12g Kim S, Jinich A, Aspuru-Guzik A. J. Chem. Inf. Model. 2017; 57: 657
- 12h Coley CW, Barzilay R, Green WH, Jaakkola TS, Jensen KF. J. Chem. Inf. Model. 2017; 57: 1757
- 12i Schutt KT, Sauceda HE, Kindermans PJ, Tkatchenko A, Muller KR. J. Chem. Phys. 2018; 148: 241722
- 12j Xie T, Grossman JC. Phys. Rev. Lett. 2018; 120: 145301
- 12k Ryan K, Lengyel J, Shatruk M. J. Am. Chem. Soc. 2018; 140: 10158
- 12l Xie T, France-Lanord A, Wang Y, Shao-Horn Y, Grossman JC. Nat. Commun. 2019; 10: 2667
- 12m Häse F, Fdez Galván I, Aspuru-Guzik A, Lindh R, Vacher M. Chem. Sci. 2019; 10: 2298
- 12n Sandfort F, Strieth-Kalthoff F, Kühnemund M, Beecks C, Glorius F. Chem. 2020; 6: 1379
- 13a Bartók AP, Kondor R, Csányi G. Phys. Rev. B 2013; 87: 184115
- 13b De S, Bartok AP, Csanyi G, Ceriotti M. Phys. Chem. Chem. Phys. 2016; 18: 13754
- 14a Behler J. J. Chem. Phys. 2011; 134: 074106
- 14b Jose KV, Artrith N, Behler J. J. Chem. Phys. 2012; 136: 194111
- 15a Fey N, Orpen AG, Harvey JN. Coord. Chem. Rev. 2009; 253: 704
- 15b Fey N. Dalton Trans. 2010; 39: 296
- 15c Reid JP, Sigman MS. Nat. Rev. Chem. 2018; 2: 290
- 15d Ahn S, Hong M, Sundararajan M, Ess DH, Baik MH. Chem. Rev. 2019; 119: 6509
- 15e Zahrt AF, Athavale SV, Denmark SE. Chem. Rev. 2020; 120: 1620
- 16 Kim KH. In Molecular Similarity in Drug Design, Vol. 12. Dean PM. Springer; Dordrecht: 1996: 291
- 17a Lipkowitz KB, Pradhan M. J. Org. Chem. 2003; 68: 4648
- 17b El Kerdawy A, Gussregen S, Matter H, Hennemann M, Clark T. J. Chem. Inf. Model. 2013; 53: 1486
- 17c Ginex T, Munoz-Muriedas J, Herrero E, Gibert E, Cozzini P, Luque FJ. J. Comput. Chem. 2016; 37: 1147
- 18a Cramer RD, Patterson DE, Bunce JD. J. Am. Chem. Soc. 1988; 110: 5959
- 18b Fusti-Molnar L, Merz KM. Jr. J. Chem. Phys. 2008; 129: 025102
- 19a Zahrt AF, Henle JJ, Rose BT, Wang Y, Darrow WT, Denmark SE. Science 2019; 363: eaau5631
- 19b Henle JJ, Zahrt AF, Rose BT, Darrow WT, Wang Y, Denmark SE. J. Am. Chem. Soc. 2020; 142: 11578
- 20a Dixon S, Merz KM. Jr, Lauri G, Ianni JC. J. Comput. Chem. 2005; 26: 23
- 20b Melville JL, Lovelock KR. J, Wilson C, Allbutt B, Burke EK, Lygo B, Hirst JD. J. Chem. Inf. Model. 2005; 45: 971
- 20c Ferreira AM, Krishnamurthy M, Moore BM. II, Finkelstein D, Bashford D. Bioorg. Med. Chem. 2009; 17: 2598
- 20d Denmark SE, Gould ND, Wolf LM. J. Org. Chem. 2011; 76: 4337
- 21a Golbraikh A, Bonchev D, Tropsha A. J. Chem. Inf. Comp. Sci. 2001; 41: 147
- 21b Urbano-Cuadrado M, Carbó JJ, Maldonado AG, Bo C. J. Chem. Inf. Model. 2007; 47: 2228
- 21c Shang J, Wang W.-M, Li Y.-H, Song H.-B, Li Z.-M, Wang J.-G. J. Agric. Food Chem. 2012; 60: 8286
- 21d Yamaguchi S, Nishimura T, Hibe Y, Nagai M, Sato H, Johnston I. J. Comput. Chem. 2017; 38: 1825
- 21e Yamaguchi S, Sodeoka M. Bull. Chem. Soc. Jpn. 2019; 92: 1701
- 22 Pastor M, Cruciani G, McLay I, Pickett S, Clementi S. J. Med. Chem. 2000; 43: 3233
- 23a Fontaine F, Pastor M, Zamora I, Sanz F. J. Med. Chem. 2005; 48: 2687
- 23b Sciabola S, Alex A, Higginson PD, Mitchell JC, Snowden MJ, Morao I. J. Org. Chem. 2005; 70: 9025
- 23c Aguado-Ullate S, Guasch L, Urbano-Cuadrado M, Bo C, Carbo JJ. Catal. Sci. Technol. 2012; 2: 1694
- 24a Papadakis P, Pratikakis I, Perantonis S, Theoharis T. Pattern Recognit. 2007; 40: 2437
- 24b Tabia H, Laga H. IEEE Trans. Multimedia 2015; 17: 1591
- 24c Guo Y, Bennamoun M, Sohel F, Lu M, Wan J, Kwok NM. Int. J. Comput. Vis. 2016; 116: 66
-
25 www.spmsgen.net (accessed Nov. 16, 2020)
- 26 Halgren TA. J. Comput. Chem. 1996; 17: 490
- 27a Hopfinger AJ, Wang S, Tokarski JS, Jin B, Albuquerque M, Madhav PJ, Duraiswami C. J. Am. Chem. Soc. 1997; 119: 10509
- 27b Broughton HB, Gordaliza M, Castro MA, Miguel del Corral JM, San Feliciano A. J. Mol. Struct.: THEOCHEM 2000; 504: 287
- 28 LeCun Y, Bengio Y, Hinton G. Nature 2015; 521: 436
-
29 The structure of the RuII-(R)-BINAP catalyst is taken from the X-ray crystal structure of RuCl2((R)-BINAP)Py2 (CCDC 140150).
For selected reviews, see:
For selected reviews, see:
For selected reviews, see:
For selected studies, see:
For selected studies, see:
For selected studies, see:
For selected reviews, see:
For selected studies, see:
For selected studies, see:
For selected studies, see:
For selected studies, see:
For selected studies, see:
For selected studies, see:
For selected studies, see: