Subscribe to RSS
DOI: 10.1055/s-2007-973896
Synthesis of Functionalized Spiroheterocycles by Sequential Multicomponent Reaction/Metal-Catalyzed Carbocylizations from Simple β-Ketoesters and Amides
Publication History
Publication Date:
13 April 2007 (online)
![](https://www.thieme-connect.de/media/synlett/200707/lookinside/thumbnails/10.1055-s-2007-973896-1.jpg)
Abstract
A new strategy from simple cyclic β-ketoesters or amides involving a selective three-component reaction and a ring-closing metathesis or a palladium-catalyzed carbocyclization in a sequential fashion to access spiroheterocycles is reported. This expedient two-step sequence generates compounds of significant molecular complexity and high synthetic and biological relevance from simple and readily available starting materials.
Key words
multicomponent reactions - ring-closing metathesis - Heck reaction - spiroheterocycles - 1,3-dicarbonyl compounds
-
1a For a recent monograph, see: Multicomponent Reactions
Zhu J.Bienaymé H. Wiley-VCH; Weinheim: 2005. - For some recent reviews on MCRs, see:
-
1b
Dömling A. Chem. Rev. 2006, 106: 17 ; and references cited therein -
1c
Bienaymé H.Hulme C.Oddon G.Schmitt P. Chem. Eur. J. 2000, 6: 3321 -
1d
Dömling A.Ugi I. Angew. Chem. Int. Ed. 2000, 39: 3168 -
1e
Zhu J. Eur. J. Org. Chem. 2003, 1133 -
1f
Orru RV.de Greef M. Synthesis 2003, 1471 -
1g
Ramon DJ.Yus M. Angew. Chem. Int. Ed. 2005, 44: 1602 - For representative reviews, see:
-
1h
Tietze LF. Chem. Rev. 1996, 96: 115 -
1i
Tietze LF.Lieb ME. Curr. Opin. Chem. Biol. 1998, 2: 363 -
1j
Rodriguez J. Synlett 1999, 505 -
1k
Tietze LF.Brasche G.Gericke K. Domino Reactions in Organic Synthesis Wiley-VCH; Weinheim: 2006. - 2
Weber L.Illgen M.Almstetter M. Synlett 1999, 366 - 3
Schreiber SL. Science 2000, 287: 1964 -
4a
Trost BM. Science 1991, 254: 1471 -
4b
Trost BM. Angew. Chem. Int. Ed. 1995, 34: 258 -
4c
Trost BM. Acc. Chem. Res. 2002, 35: 695 -
5a
Wender PA.Bi FC.Gamber GG.Gosselin F.Hubbard RD.Scanio MJC.Sun R.Williams TJ.Zhang L. Pure Appl. Chem. 2002, 74: 25 -
5b
Wender PA.Baryza JL.Brenner SE.Clarke MO.Gamber GG.Horan JC.Jessop TC.Kan C.Pattabiraman K.Williams TJ. Pure Appl. Chem. 2003, 75: 143 -
5c
Wender PA.Baryza JL.Brenner SE.Clarke MO.Craske ML.Horan JC.Meyer T. Curr. Drug Discov. Technol. 2004, 1: 1 -
5d
Wender PA.Gamber GG.Hubbard RD.Pham SM.Zhang L. J. Am. Chem. Soc. 2005, 127: 2836 - 6 For a special issue in environmental chemistry, see:
Grissom CB. Chem. Rev. 1995, 95: 3 - 7
Wender PA.Handy ST.Wright DL. Chem. Ind. (London) 1997, 765 -
8a
See refs 1a and 1b.
-
8b
Gracias V.Gasiecki AF.Djuric SW. Org. Lett. 2005, 7: 3183 - For recent reviews, see:
- 9a Simon C., Constantieux T., Rodriguez J.; Eur. J. Org. Chem.; 2004, 4957
-
9b
Constantieux T.Rodriguez J. In Targets in Heterocyclic Systems Vol 9:Attanasi OA.Spinelli D. Società Chimica Italiana; Rome: 2005. -
9c
Liéby-Muller F.Simon C.Constantieux T.Rodriguez J. QSAR Comb. Sci. 2006, 25: 432 -
10a
Liéby-Muller F.Simon C.Imhof K.Constantieux T.Rodriguez J. Synlett 2006, 1671 -
10b
Liéby-Muller F.Constantieux T.Rodriguez J. J. Am. Chem. Soc. 2005, 127: 17176 -
10c
Habib-Zahmani H.Hacini S.Charonnet E.Rodriguez J. Synlett 2002, 1827 -
11a
Sannigrahi M. Tetrahedron 1999, 55: 9007 -
11b
Martin JD. In Studies in Natural Products Chemistry Vol. 6: . Elsevier; Amsterdam: 1990. p.59 -
11c
El Bialy SAA.Braun H.Tietze LF. Synthesis 2004, 2249 - 12
Takada N.Umemura N.Suenaga K.Chou T.Nagatsu A.Haino T.Yamada K.Uemura D. Tetrahedron Lett. 2001, 42: 3491 - 13
Takada N.Umemura N.Suenaga K.Uemura D. Tetrahedron Lett. 2001, 42: 3495 -
14a
See ref. 10b.
-
14b
Charonnet E.Filippini MH.Rodriguez J. Synthesis 2001, 788 -
16a
Fürstner A.Langemann K. J. Am. Chem. Soc. 1997, 119: 9130 -
16b
Cossy J.Bauer D.Bellosta V. Tetrahedron Lett. 1999, 40: 4187 -
16c
Ghosh AK.Cappiello J.Shin D. Tetrahedron Lett. 1998, 39: 4651 -
16d
Fürstner A.Langemann K. J. Am. Chem. Soc. 1997, 119: 9130 - 18
Heck RF. Vinyl Substitution with Organopalladium Intermediates, In Comprehensive Organic Synthesis Vol. 4: Pergamon; Oxford: 1991. -
19a
Wolfe JP.Wagaw S.Buchwald SL. J. Am. Chem. Soc. 1996, 118: 7215 -
19b
Yang BH.Buchwald SL. Org. Lett. 1999, 1: 35
References and Notes
General Procedure for MCRs: To a solution of ketoester or ketoamide 1 (1 mmol) and DBU (3 mmol) in appropriate solvent (4 mL, Table 1) was added the corresponding aldehyde 2 (1.1 mmol) and halide 3 (2 mmol). The resulting solution was stirred for the indicated time and at the indicated temperature (Table 1). After completion of the reaction and evaporation of most of the solvent under reduced pressure, 1 N solution of HCl (30 mL) was added to the oily residue. Extraction with Et2O (3 × 40 mL) followed by successive washing with distilled H2O (2 × 20 mL) and brine (20 mL) gave, after drying (MgSO4) and evaporation of the solvent, the crude compounds which were purified by flash chromatography on silica gel.
Physical Data for Compound 4b: yellow oil; R
f
[Et2O-PE (50:50)] 0.79. IR (liquid film): 2942, 1740, 1678, 1588, 1472, 1208, 1133, 927 cm-1. MS: m/z (%) = 305 (100) [M + H+], 264 (13), 247 (36), 219 (12), 206 (8). 1H NMR (300.13 MHz, CDCl3): δ = 7.50 (d, J = 1.5 Hz, 1 H), 7.35 (s, 1 H), 6.72 (d, J = 3.5 Hz, 1 H), 6.53 (dd, J = 1.5, 3.5 Hz, 1 H), 5.65-5.92 (m, 2 H), 5.13-5.32 (m, 4 H), 4.63 (dd, J = 1.0, 5.6 Hz, 2 H), 3.71 (d, J = 11.2 Hz, 1 H), 3.15 (d, J = 11.2 Hz, 1 H), 2.84 (dd, J = 7.1, 13.8 Hz, 1 H), 2.58 (dd, J = 7.6, 13.8 Hz, 1 H). 13C NMR (75.47 MHz, CDCl3): δ = 197.3, 168.9, 151.6, 144.7, 131.3, 132.0, 128.2, 118.8, 115.9, 120.1, 112.9, 115.5, 66.6, 60.4, 38.6, 32.7.
General Procedure for RCMs: To a 6 × 10-3 M solution of spiroheterocyclic precursors 4a-e in anhyd CH2Cl2, under an atmosphere of argon, Grubbs’ catalyst 5b was introduced in several portions of 2% every 2 h. The mixture was stirred at reflux and completion of reaction was checked by TLC. The mixture was filtered through a pad of silica gel and celite and the crude material was purified by flash chromatography on silica gel.
Physical Data for Compound 6c: yellow solid; mp 104-106 °C. IR (liquid film): 2960, 1708, 1620, 1460, 1201, 1030 cm-1. MS: m/z (%) = 290 (100) [M + H+], 233 (17), 190 (5). 1H NMR (300.13 MHz, CDCl3): δ = 7.53 (d, J = 1.7 Hz, 1 H), 7.32 (s, 1 H), 6.67 (d, J = 3.3 Hz, 1 H), 6.49 (dd, J = 1.7, 3.3 Hz, 1 H), 5.75-5.85 (m, 2 H), 3.90-4.18 (m, 2 H), 3.81 (d, J = 11.7 Hz, 1 H), 3.03 (s, 3 H), 3.00 (d, J = 11.7 Hz, 1 H), 2.89-2.98 (m, 1 H), 2.26-2.35 (m, 1 H). 13C NMR (75.47 MHz, CDCl3): δ = 198.6, 170.2, 151.8, 144.4, 127.7, 125.8, 128.4, 112.8, 115.5, 115.0, 60.4, 49.8, 38.9, 35.1, 31.9.
General Procedure for Heck Reaction: To a 4 × 10-2 M solution of spiroheterocyclic precursors 4f and 4g in anhyd MeCN, under an atmosphere of argon, palladium acetate (4 equiv) and PPh3 (8 equiv) were added, followed by Et3N (1.2 equiv). The mixture was stirred at reflux and the completion of reaction was checked by TLC. The mixture was filtered through a pad of celite and the crude material was purified by flash chromatography on silica gel.
Physical Data for Compound 7b: yellow powder; mp 169-171 °C. IR (liquid film): 2926, 1719, 1626, 1444, 1337, 1256, 940 cm-1. MS: m/z (%) = 326 (100) [M + H+], 295 (3), 255 (3), 201 (3), 164 (16). 1H NMR (300.13 MHz, CDCl3): δ = 7.34-7.64 (m, 6 H), 5.41 (d, J = 0.9, 16.6 Hz, 2 H), 5.02 (d, J = 9.3 Hz, 1 H), 4.72 (dd, J = 1.1, 15.1 Hz, 2 H), 4.04 (dd, J = 0.9, 11.3 Hz, 1 H), 3.57 (d, J = 15.3 Hz, 1 H), 3.07 (d, J = 11.2 Hz, 1 H), 3.03 (s, 3 H), 2.98 (d, J = 14.4 Hz, 1 H), 2.56 (d, J = 14.4 Hz, 1 H). 13C NMR (75.47 MHz, CDCl3): δ = 200.9, 169.0, 143.5, 141.8, 135.0, 130.5, 129.6, 129.5, 129.2, 128.8, 115.3, 112.8, 61.4, 54.2, 39.4, 37.1, 31.1.