Subscribe to RSS
DOI: 10.1055/s-2008-1042910
Gold-Catalyzed Double Intramolecular Alkyne Hydroalkoxylation: Synthesis of the Bisbenzannelated Spiroketal Core of Rubromycins
Publication History
Publication Date:
11 March 2008 (online)
![](https://www.thieme-connect.de/media/synlett/200806/lookinside/thumbnails/10.1055-s-2008-1042910-1.jpg)
Abstract
The synthesis of the bisbenzannelated spiroketal core of natural bioactive rubromycins via a gold-catalyzed double intramolecular hydroalkoxylation was described. A comparative study on the formation of aliphatic and of aromatic spiroketals was also conducted.
Key words
alkyne hydroalkoxylation - spiroketal - rubromycin - gold catalysis - coupling
-
1a
Brockmann H.Lenk W.Schwantje G.Zeeck A. Tetrahedron Lett. 1966, 3525 -
1b
Brockmann H.Lenk W.Schwantje G.Zeeck A. Chem. Ber. 1969, 102: 126 -
1c
Brockmann H.Zeeck A. Chem. Ber. 1970, 103: 1709 -
2a
Goldman ME.Salituro GS.Bowen JA.Williamson JM.Zink L.Schleif WA.Emini EA. Mol. Pharmacol. 1990, 38: 20 -
2b
Mizushina Y.Ueno T.Oda M.Yamaguchi T.Saneyoshi M.M .Sakaguchi K. Biochim. Biophys. Acta 2000, 1523: 172 -
3a
Coronelli C.Pagani H.Bardone MR.Lancini GC. J. Antibiot. 1974, 27: 161 -
3b
Bardone MR.Martinelli E.Zerilli LF.Cornelli C. Tetrahedron 1974, 30: 2747 - 4
Trani A.Dallanoce C.Pranzone G.Ripamonti F.Goldstein BP.Ciabatti R. J. Med. Chem. 1997, 40: 967 -
5a
Chino M.Nishikawa K.Umekia M.Hayashi C.Yamazaki T.Tsuchida T.Sawa T.Hamada M.Takeuchi T. J. Antibiot. 1996, 49: 752 -
5b
Chino M.Nishikawa K.Tsuchida T.Sawa R.Nakamura H.Nakamura KT.Muraoka Y.Ikeda D.Naganawa H.Sawa T.Takeuchi T. J. Antibiot. 1997, 50: 143 - 6 For a review on the rubromycins, see:
Brasholz M.Sörgel S.Azap C.Reissig H.-U. Eur. J. Org. Chem. 2007, 3801 -
7a
Qin D.Ren RX.Siu T.Zheng C.Danishefsky SJ. Angew. Chem. Int. Ed. 2001, 40: 4709 -
7b
Siu T.Qin D.Danishefsky SJ. Angew. Chem. Int. Ed. 2001, 40: 4713 -
7c
Akai S.Kakiguchi K.Nakamura Y.Kuriwaki I.Dohi T.Harada S.Kubo O.Morita N.Kita Y. Angew. Chem. Int. Ed. 2007, 46: 7458 -
8a
Capecchi T.de Koning CB.Michael JP. Tetrahedron Lett. 1998, 39: 5429 -
8b
Capecchi T.de Koning CB.Michael JP. J. Chem. Soc., Perkin Trans. 1 2000, 2681 -
8c
Tsang KY.Brimble MA.Bremner JB. Org. Lett. 2003, 5: 4425 -
8d
Tsang KY.Brimble MA. Tetrahedron 2007, 63: 6015 -
8e
Waters SP.Fennie MW.Kozlowski MC. Tetrahedron Lett. 2006, 47: 5409 -
8f
Waters SP.Fennie MW.Kozlowski MC. Org. Lett. 2006, 8: 3243 -
8g
Sörgel S.Azap C.Reissig H.-U. Org. Lett. 2006, 8: 4875 -
9a
Lindsey CC.Wu KL.Pettus TRR. Org. Lett. 2006, 8: 2365 -
9b For a synthesis of bisbenzannelated 6,6-spiroketals, see:
Zhou G.Zheng D.Da S.Xie Z.Li Y. Tetrahedron Lett. 2006, 47: 3349 - For syntheses of the isocoumarin subunit, see:
-
10a
Thrash TP.Welton TD.Behar V. Tetrahedron Lett. 2000, 41: 29 -
10b
Waters SP.Kozlowski MC. Tetrahedron Lett. 2001, 42: 3567 -
10c
Brasholz M.Reissig H.-U. Synlett 2004, 2736 -
10d For syntheses of the naphthalene subunit of rubromycin and related structures, see:
Brasholz M.Luan X.Reissig H.-U. Synthesis 2005, 3571 -
10e
Xie X.Kozlowski MC. Org. Lett. 2001, 3: 2661 -
10f
Sörgel S.Azap C.Reissig H.-U. Eur. J. Org. Chem. 2006, 4405 - For a review of gold-catalyzed reactions, see:
-
11a
Hashmi ASK. Gold Bull. 2004, 37: 51 -
11b
Hashmi ASK. Chem. Rev. 2007, 107: 3180 -
12a
Liu Y.Liu M.Guo S.Tu H. Org. Lett. 2006, 8: 3445 -
12b
Barluenga J.Diéguez A.Fernández A.Rodríguez F.Fañanás FJ. Angew. Chem. Int. Ed. 2006, 45: 2091 -
12c
Liu Y.Song F.Song Z.Liu M.Yan B. Org. Lett. 2005, 7: 5409 -
12d
Belting V.Krause N. Org. Lett. 2006, 8: 4489 -
12e
Antoniotti S.Genin E.Michelet V.Genêt J.-P. J. Am. Chem. Soc. 2005, 127: 9976 -
12f
Liu B.De Brabander JK. Org. Lett. 2006, 8: 4907 -
12g
Li YF.Zhou F.Forsyth CJ. Angew. Chem. Int. Ed. 2007, 46: 279 -
12h
Harkat H.Weibel J.-M.Pale P. Tetrahedron Lett. 2007, 48: 1439 - 13 For a synthesis of alkyne 5, see:
Trost BM.Shen HC.Li D.Surivet JP.Sylvain C. J. Am. Chem. Soc. 2004, 126: 11966 - For syntheses of o-iodophenols, see:
-
14a
Edgar KJ.Falling SN. J. Org. Chem. 1990, 55: 5287 -
14b
Schreiber FG.Stevenson R. J. Chem. Soc., Perkin Trans. 1 1977, 90 -
15a
Sonogashira K.Tohda Y.Hagihara N. Tetrahedron Lett. 1975, 4467 -
15b
Hiroya K.Suzuki N.Sakamoto T.
J. Chem. Soc., Perkin Trans. 1 2000, 4339 - 17
Utimoto K. Pure Appl. Chem. 1983, 55: 1845 -
21a
Li XW.Chianese AR.Vogel T.Crabtree RH. Org. Lett. 2005, 7: 5437 -
21b
Fugami K.Hagiwara K.Okeda T.Kosugi M. Chem. Lett. 1998, 81
References and Notes
On the basis of the protocol described by Uitimoto, [17] palladium reagents were tried initially but spiroketal 7a was isolated in very low yields. Treatment of 6a with 5 mol% of PdCl2 in refluxing MeCN for 2 d afforded spiroketal 7a in only 5% yield. Even with 1.0 equiv of PdCl2 or the reaction was performed in sealed tube at 120 °C, the yield of 7a was still as low as 20% and 10%, respectively. Only trace of 7a was isolated by using PdCl2(PhCN)2 and PdCl2(MeCN)2 in Et2O at r.t.
18We treated 6a with 10 mol% of Ph3PAuCl/AgOTf and 20 mol% of PTSA in CH2Cl2 at r.t. for 2 d provided the aromatic spiroketal 7a in 61% yield.
19General Procedure for Gold-Catalyzed Spiroketalization Under argon, PPh3AuCl (9.5 mg, 0.02 mmol) and AgOTf (5.2 mg, 0.02 mmol) were added to a stirred solution of 6a (48.0 mg, 0.2 mmol) in CH2Cl2 (4 mL). After the reaction mixture had been stirred at r.t. for 2 d, the solvent was removed and the residue purified by flash chromatography on silica gel (hexane-EtOAc, 8:1 v/v) to give the bisspiroketal 7a (30.0 mg, 62%) as a white solid.
20
Spectral Data for Selected Compounds (Table 2)
Compound 7b: white solid; mp 115-117 °C. 1H NMR (300 MHz, CDCl3): δ = 7.13-7.07 (m, 2 H), 7.04 (s, 1 H), 6.95-6.88 (m, 2 H), 6.78 (d, J = 8.4 Hz, 1 H), 6.68 (d, J = 8.1 Hz, 1 H), 3.40 (d, J = 16.5 Hz, 1 H), 3.30-3.18 (m, 2 H), 2.81 (ddd, J = 16.5, 6.0, 2.4 Hz, 1 H), 2.35-2.29 (m, 4 H), 2.17 (td, J = 12.6, 6.3 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 155.8, 152.3, 130.4, 129.1, 128.4, 127.4, 125.4, 125.3, 121.4, 121.1, 117.1, 109.4, 109.0, 41.9, 30.4, 21.9, 20.8. IR: ν = 3020 (CH, arom.), 2925 (CH), 1584, 1489 (ArC=C), 1080, 1045 (CO) cm-1. ESI-HRMS: m/z calcd for C17H16O2Na [M + Na]+: 275.1043; found: 275.1046.
Compound 7c: pale yellow solid; mp 173-175 °C. 1H NMR (300 MHz, CDCl3): δ = 7.26 (s, 1 H), 7.19-7.08 (m, 3 H), 6.91 (td, J = 7.2, 1.2 Hz, 1 H), 6.79 (d, J = 8.4 Hz, 1 H), 6.72 (d, J = 8.1 Hz, 1 H), 3.44 (d, J = 16.2 Hz, 1 H), 3.31-3.19 (m, 2 H), 2.81 (ddd, J = 16.5, 6.0, 2.4 Hz, 1 H), 2.32 (ddd, J = 13.5, 6.0, 3.0 Hz, 1 H), 2.19 (td, J = 12.3, 6.3 Hz, 1 H), 1.31 (s, 9 H). 13C NMR (75 MHz, CDCl3): δ = 155.7, 152.4, 144.1, 129.1, 127.4, 124.9, 124.8, 121.8, 121.4, 121.1, 117.1, 109.1, 109.0, 42.1, 34.3, 31.7, 30.5, 21.9. IR: ν = 3021 (CH, arom.), 2962 (CH), 1583, 1492 (ArC=C), 1076, 1046 (CO) cm-1. ESI-HRMS: m/z calcd for C20H23O2 [M + H]+: 295.1693; found: 295.1687.
Compound 7d: pale yellow solid; mp 154-155 °C. 1H NMR (300 MHz, CDCl3): δ = 7.54 (d, J = 8.2 Hz, 2 H), 7.47-7.37 (m, 4 H), 7.30 (t, J = 7.5 Hz, 1 H), 7.13 (t, J = 8.1 Hz, 2 H), 6.94 (t, J = 7.5 Hz, 1 H), 6.88-6.81 (m, 2 H), 3.51 (d, J = 16.2 Hz, 1 H), 3.37-3.22 (m, 2 H), 2.84 (ddd, J = 16.5, 6.0, 2.7 Hz, 1 H), 2.36 (ddd, J = 13.5, 6.0, 2.7 Hz, 1 H), 2.22 (td, J = 12.9, 6.0 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 157.5, 152.2, 141.3, 134.8, 129.1, 128.7, 127.5, 127.2, 126.9, 126.6, 126.0, 123.7, 121.4, 121.2, 117.1, 110.0, 109.4, 41.9, 30.4, 21.9. IR: ν = 3032 (CH, arom.), 2925 (CH), 1583, 1480 (ArC=C), 1082, 1046 (CO) cm-1. ESI-HRMS: m/z calcd for C22H19O2 [M + H]+: 315.1380; found: 315.1378.