20.5. 1.3.6 Synthesis of Esters from Aldehydes, Ketones, and Derivatives (Including Enol Ethers) (Update 2025)
Book
Editors: Campagne, J.-M. ; Donohoe, T. J.; Fuerstner, A. ; Luisi, R.; Montchamp, J.-L.
Title: Knowledge Updates 2025/1
Online ISBN: 9783132459816; Book DOI: 10.1055/b000001094
1st edition © 2025 Thieme. All rights reserved.
Georg Thieme Verlag KG, Stuttgart
Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry
Science of Synthesis Knowledge Updates
Parent publication
Title: Science of Synthesis
DOI: 10.1055/b-00000101
Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.
Type: Multivolume Edition
Abstract
![](https://www.thieme-connect.de/media/10.1055-b000001094/thumbnails/a_102tbg.jpg)
This is an update to a previous Science of Synthesis chapter (Section 20.5.1.3), and describes methods for the synthesis of carboxylic esters from various types of aldehydes, ketones, and derivatives (including acetals and enol ethers) that were published between 2007 and 2023. In this update, emphasis is placed on modern catalytic methods. In particular, the synthetically highly useful organocatalytic formation of esters from aldehydes, catalyzed by N-heterocyclic carbenes (NHCs) under oxidative conditions and via internal redox reactions, which was not covered in the previous chapter, is surveyed. The spectrum of catalytic methods covered extends further to catalytic dehydrogenative cross couplings of aldehydes with alcohols, the Tishchenko reaction (in particular to stereoselective variants thereof), to the use of oxygen-plus-catalysts in the Baeyer–Villiger oxidation of ketones and the generation of esters from acetals, and the catalytic dehydrogenation of enol ethers in the presence of water.
Key words
aldehydes - ketones - acetals - diketones - hydroxy ketones - esters - catalysis - N-heterocyclic carbenes - oxidative esterifications - redox reactions - Tishchenko reactions - dehydrogenative cross coupling- 6 Berkessel A, Elfert S, Yatham VR, Neudörfl J.-M, Schlörer NE, Teles JH. Angew. Chem. Int. Ed. 2012; 51: 12 370 Angew. Chem. 2012; 124: 12 537
- 7 Paul M, Neudörfl J.-M, Berkessel A. Angew. Chem. Int. Ed. 2019; 58: 10 596 Angew. Chem. 2019; 131: 10 706
- 10 Regnier V, Romero EA, Molton F, Jazzar R, Bertrand G, Martin D. J. Am. Chem. Soc. 2019; 141: 1109
- 15 De Risi C, Brandolese A, Di Carmine G, Ragno D, Massi A, Bortolini O. Chem.–Eur. J. 2023; 29 e202202467
- 20 Lu S, Poh SB, Siau W.-Y, Zhao Y. Angew. Chem. Int. Ed. 2013; 52: 1731 Angew. Chem. 2013; 125: 1775
- 27 Ragno D, Di Carmine G, Brandolese A, Bortolini O, Giovannini PP, Fantin G, Bertoldo M, Massi A. Chem.–Eur. J. 2019; 25: 14 701
- 30 Ragno D, Leonardi C, Di Carmine G, Bortolini O, Brandolese A, De Risi C, Massi A. ACS Sustainable Chem. Eng. 2021; 9: 8295
- 32 Harnying W, Sudkaow P, Biswas A, Berkessel A. Angew. Chem. Int. Ed. 2021; 60: 19 631 Angew. Chem. 2021; 133: 19 783
- 33 Biswas A, Neudörfl J.-M, Schlörer NE, Berkessel A. Angew. Chem. Int. Ed. 2021; 60: 4507 Angew. Chem. 2021; 133: 4557
- 36 Song R, Xie Y, Jin Z, Chi YR. Angew. Chem. Int. Ed. 2021; 60: 26 026 Angew. Chem. 2021; 133: 26 230
- 41 Di Carmine G, Ragno D, Brandolese A, Bortolini O, Pecorari D, Sabuzi F, Mazzanti A, Massi A. Chem.–Eur. J. 2019; 25: 7469
- 42 Liu Y, Chen Q, Mou C, Pan L, Duan X, Chen X, Chen H, Zhao Y, Lu Y, Jin Z, Chi YR. Nat. Commun. 2019; 10: 1675
- 46 Wu Y, Li M, Sun J, Zheng G, Zhang Q. Angew. Chem. Int. Ed. 2022; 61: e202 117 340 Angew. Chem. 2022; 133 e202117340
- 59 Ragno D, Brandolese A, Urbani D, Di Carmine G, De Risi C, Bortolini O, Giovannini PP, Massi A. React. Chem. Eng. 2018; 3: 816
- 77 Gaspa S, Raposo I, Pereira L, Mulas G, Ricci PC, Porcheddu A, De Luca L. New J. Chem. 2019; 43: 10 711
- 87 Kuwano S, Harada S, Kang B, Oriez R, Yamaoka Y, Takasu K, Yamada K. J. Am. Chem. Soc. 2013; 135: 11 485
- 90 Wang Y, Yamauchi A, Hashimoto K, Fujiwara T, Inokuma T, Mitani Y, Ute K, Kuwano S, Yamaoka Y, Takasu K, Yamada K. ACS Catal. 2022; 12: 6100
- 91 Yamada K, Yamauchi A, Fujiwara T, Hashimoto K, Wang Y, Kuwano S, Inokuma T. Asian J. Org. Chem. 2022; 11 e202200452
- 97 Yatham VR, Harnying W, Kootz D, Neudörfl J.-M, Schlörer NE, Berkessel A. J. Am. Chem. Soc. 2016; 138: 2670
- 109 Cronin L, Manoni F, O’Connor CJ, Connon SJ. Angew. Chem. Int. Ed. 2010; 49: 3045 Angew. Chem. 2010; 122: 3109
- 124 Turlik A, Ando K, Mackey P, Alcock E, Light M, McGlacken GP, Houk KN. J. Org. Chem. 2021; 86: 4296
- 128 Cheng J, Zhu M, Wang C, Li J, Jiang X, Wei Y, Tang W, Xue D, Xiao J. Chem. Sci. 2016; 7: 4428 corrigendum: Chem. Sci. 2017; 8: 6692
- 129 Kawasaki T, Ishida N, Murakami M. Angew. Chem. Int. Ed. 2020; 59: 18 267 Angew. Chem. 2020; 132: 18 424
- 136 Poladura B, Martínez-Castañeda A, Rodríguez-Solla H, Llavona R, Concellón C, del Amo V. Org. Lett. 2013; 15: 2810
- 139 Mikula H, Svatunek D, Lumpi D, Glöcklhofer F, Hametner C, Fröhlich J. Org. Process Res. Dev. 2013; 17: 313
- 142 Hayes CJ, Sherlock AE, Green MP, Wilson C, Blake AJ, Selby MD, Prodger JC. J. Org. Chem. 2008; 73: 2041
- 144 Meng S.-S, Liang Y, Cao K.-S, Zou L, Lin X.-B, Yang H, Houk KN, Zheng W.-H. J. Am. Chem. Soc. 2014; 136: 12 249
- 145 Kuhakarn C, Panchan W, Chiampanichayakul S, Samakkanad N, Pohmakotr M, Reutrakul V, Jaipetch T. Synthesis 2009; 929
- 146 Panchan W, Chiampanichayakul S, Snyder DL, Yodbuntung S, Pohmakotr M, Reutrakul V, Jaipetch T, Kuhakarn C. Tetrahedron 2010; 66: 2732